Synthesis of peroxid-containing hetero-chain amphiphilic oligomers their colloid-chemical properties

2020;
: 27-32
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

New surface-active oligomers were synthesized with the alternative placement of hydrophilic and lipophilic blocks based on substituted peroxide-containing oxetanes and polyesters of higher dicarboxylic acids and polyethylene glycols of different molecular weights. By acylation of peroxide-containing oxetane with dichloroanhydride decane and dodecanedioic acids, the corresponding bis (peroxyalkyloxetane) esters were synthesized. The interaction of the obtained diesters with polyethylene glycols PEG-300 and PEG-600 led to synthesys of amphiphilic oligomers, with reactive peroxide groups in the lateral branches of the macro-chain.

1. Gesang, T., Höper, R., Possart, W., Petermann, J., Hennemann, O.-D. (1996). AFM studies of the initial stages of spin-coated prepolymer film growth on silicon wafers. Advanced Materials, 8(10), 829-833. doi:10.1002/adma.19960081014.
https://doi.org/10.1002/adma.19960081014
2. Luo, Q., Chen, X., Liu, Z., Sun, Z., Ming, N. (1997). Deposition of oriented polymer films for liquid crystal slignment by pulsed laser ablation. Applied Surface Science, 108(1), 89-93. doi:10.1016/s0169-4332(96)00545-4.
https://doi.org/10.1016/S0169-4332(96)00545-4
3. Park, M., Harrison, C., Chaikin P.M., (1997) Block copolymer lithography: Periodic arrays of ~10 to the 11th power holes in 1 square centimeter. Science. 276 (5317). 1401-1404.
https://doi.org/10.1126/science.276.5317.1401
4. Schmolka, I.R. (1977). A review of block polymer surfactants. Journal of the American Oil Chemists' Society. 54. 110.
https://doi.org/10.1007/BF02894385
5. Alexandridis, P., Hatton, T.A (1995). Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 96(1-2), 1-46. doi:10.1016/0927-7757(94)03028-x
https://doi.org/10.1016/0927-7757(94)03028-X
6. Voronov A., Vasylyev S., Kohut A., Peukert, W. (2008). Surface activity of new invertible amphiphilic polyesters based on poly(ethylene glycol) and aliphatic dicarboxylic acids. Journal of Colloid and Interface Science, 323(2), 379-385. doi:10.1016/j.jcis.2008.04.053
https://doi.org/10.1016/j.jcis.2008.04.053
7. Voronov, A., Kohut, A., Peukert, W., Voronov, S., Gevus, O., Tokarev, V. (2006). Invertible Architectures from Amphiphilic Polyesters. Langmuir, 22(5), 1946-1948. doi:10.1021/la052225z.
https://doi.org/10.1021/la052225z
8. Bahatofunktsionalni nanomaterialy dlia biolohii i medytsyny: molekuliarnyi dyzain, syntez i zastosuvannia (za redaktsiyeyu ch.-korespondenta NAN Ukrainy R.S.Stoika). [Multifunctional nanomaterials for biology and medicine: molecular design, synthesis and application]. (Edited by R.S.Stoika, corresponding Member of NAS of Ukraine), Kyiv, Naukova dumka. 2017. 363 p. (in Ukrainian).
9. Nishikubo, T., Kameyama, A., Kudo, H. (2006). Synthesis of Polymers with Well-defined Structures by Novel Ring-opening Reactions of Oxetanes. Journal of Synthetic Organic Chemistry, Japan, 64(9), 934-946. doi:10.5059/yukigoseikyokaishi.64.934
https://doi.org/10.5059/yukigoseikyokaishi.64.934
10. Kudo, H., Nishikubo, T. (2007). Catalytic reactions of oxetanes with protonic reagents and aprotic reagents leading to novel polymers. Journal of Polymer Science Part A: Polymer Chemistry, 45(5), 709-726. doi:10.1002/pola.21828
https://doi.org/10.1002/pola.21828
11. Semlitsch, S., Torron, S., Johansson, M., Martinelle, M. (2016). Enzymatic catalysis as a versatile tool for the synthesis of multifunctional, bio-based oligoester resins. Green Chemistry, 18(7), 1923-1929. doi:10.1039/c5gc02597d
https://doi.org/10.1039/C5GC02597D
12. К.І. Kuznetsova, V.B. Vostres, R.I. Fleychuk, O.I. Hevus, «Synthesis of surface-active monomers and peroxides on a disubstituted oxetane basis». Voprosy khimii i khimicheskoi tekhnologii, 2019, No. 2, pp. 5-11. http://dx.doi.org/10.32434/0321-40952019-123-2-5-11
https://doi.org/10.32434/0321-4095-2019-123-2-5-11
13. Nishikubo, T., & Kudo, H. (2007). High Performance Photo-curable Polymers and Oligomers Based on Novel Ring-opening Reactions of Oxetanes. MRS Proceedings, 1005. doi:10.1557/proc-1005-q02-04.
https://doi.org/10.1557/PROC-1005-Q02-04
14. BobrovaK.I., FleychukR.I., HevusO.I. «SyntezneyonohennykhPARnaosnovidyzamishchenykhoksetaniv». Visnyk Natsionalʹnoho universytetu «Lʹvivsʹka politekhnika» Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 2017, № 868, P. 3-8.
15. Bobrova K.I., Fleychuk R.I., Hevus O.I. Decomposition of three-, four-, and five-membered oxygenheterocyclesbytert-butylhydroperoxide // Bulletin of the Lviv Polytechnic National University. № 886. - 2018. - С. 52-58.
16. Toroptseva A.M., Belogorodskaya K.V., Bondarenko V.M. Laboratornyy praktikum po khimii i tekhnologii vysokomolekulyarnykh soyedineniy. - L.: Khimiya, 1972. - 416 p.