Based on data on the composition of azeotropic solutions for the acetic acid - acrylic acid system, the parameters of the semi-empirical Wilson model for temperatures 320, 330, 340, 350 K were calculated using the mathematical software package Mathcad 14 by iterations. The obtained parameters made it possible to describe the vapor-liquid equilibrium in the acetic acid-acrylic acid system: to calculate the composition of the equilibrium phases, the activity coefficients of the solution components, the separation coefficient and to construct p-x isothermal boil diagrams.
- Novak, J. P., Matous, J., Sobr, J. (1984). Zhodnoceni korelacnich vztahu pro rovnovahu kapalina- para. Chem. Prumysl., 1, 39-43.
- Gmehlin, J., Onken, U., Arlt, W. (1977). Vapor-liquid equilibrium data collection. Chemistry Data Series, DECHEMA. Frankfurt-оn-Main.
- Huazhou, Li. (2021). Multiphase Equilibria of Complex Reservoir Fluids: An Equation of State Modeling Approach. Springer Nature.
- Madson, P. W. (2016). Ethanol Distillation: The Fundamentals. Cincinnati: Katzen International, n.d. Print.
- Poling, B. E., Prausnitz, J. M., O'Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.
- Burgard, A. P., Eason, J. P., Eslick, J. C., Ghouse, J. H., Lee, A., Biegler, L. T., Miller, D. C. (2018). A Smooth, Square Flash Formulation for Equation Oriented Flowsheet Optimization, Computer Aided Chemical Engineering 44, 871-876. DOI: https://doi.org/10.1016/B978-0-444-64241-7.50140-3
- Horng-JangLiaw, Chia-LingTang, Jim-Shoung Lai (2004) A model for predicting the flash point of ternary flammable solutions of liquid. September, Combustion and Flame, 138(4), 308-319. DOI: https://doi.org/10.1016/j.combustflame.2004.06.002
- David, A. Palmer (2019) CRC Handbook of Applied Thermodynamics. CRC Press.
- Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Y. P., Sergeyev, V. V. (2019). Phase Vapor-Liquid Equilibrium for the Solutions of Dimethylzinc and Dimethyl Selenide. Chemistry, Technology and Application of Substances, 2(2), 1-6. DOI: https://doi.org/10.23939/ctas2019.02.001
- Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Yu. P., Sergeiev, V. V. (2020). Novak, J. P., Matous, J., Sobr, J. (1984). Zhodnoceni korelacnich vztahu pro rovnovahu kapalina- para. Chem. Prumysl., 1, 39-43.
- Gmehlin, J., Onken, U., Arlt, W. (1977). Vapor-liquid equilibrium data collection. Chemistry Data Series, DECHEMA. Frankfurt-оn-Main.
- Huazhou, Li. (2021). Multiphase Equilibria of Complex Reservoir Fluids: An Equation of State Modeling Approach. Springer Nature.
- Madson, P. W. (2016). Ethanol Distillation: The Fundamentals. Cincinnati: Katzen International, n.d. Print.
- Poling, B. E., Prausnitz, J. M., O'Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.
- Burgard, A. P., Eason, J. P., Eslick, J. C., Ghouse, J. H., Lee, A., Biegler, L. T., Miller, D. C. (2018). A Smooth, Square Flash Formulation for Equation Oriented Flowsheet Optimization, Computer Aided Chemical Engineering 44, 871-876. DOI: https://doi.org/10.1016/B978-0-444-64241-7.50140-3
- Horng-JangLiaw, Chia-LingTang, Jim-Shoung Lai (2004) A model for predicting the flash point of ternary flammable solutions of liquid. September, Combustion and Flame, 138(4), 308-319. DOI: https://doi.org/10.1016/j.combustflame.2004.06.002
- David, A. Palmer (2019) CRC Handbook of Applied Thermodynamics. CRC Press.
- Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Y. P., Sergeyev, V. V. (2019). Phase Vapor-Liquid Equilibrium for the Solutions of Dimethylzinc and Dimethyl Selenide. Chemistry, Technology and Application of Substances, 2(2), 1-6. DOI: https://doi.org/10.23939/ctas2019.02.001
- Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Yu. P., Sergeiev, V. V. (2020). Рhase vapor-liquid equilibrium for the solutions of dimethyltelluride and dimethylcadmium. Chemistry, Technology and Application of Substances, 3(1), 1-8. DOI: https://doi.org/10.23939/ctas2020.01.001
- Wisniak, J., Peralta, R.D., Infante, R., Cortez, G., López, R.G. (2005). Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t=(298.15 and 308.15)K Thermochimica Acta, 437(1-2), 1-6. DOI: https://doi.org/10.1016/j.tca.2005.06.007
- Wisniak, J., Cortez, G., Peralta, R. D., Infante, R., Elizalde, L. E. (2007). Some Thermodynamic Properties of the Binary Systems of Toluene with Butyl Methacrylate, Allyl Methacrylate, Methacrylic Acid and Vinyl Acetate at 20, 30 and 40 °C. Journal of Solution Chemistry, 36(8), 997-1022. DOI: https://doi.org/10.1007/s10953-007-9165-y
- Peralta, R.D., Infante, R., Cortez, G., Wisniak, J. (2007). Densities and derived thermodynamic properties of the binary systems of benzene with butyl methacrylate, allyl methacrylate, methacrylic acid, and vinyl acetate at 298.15 k Chemical Engineering Communications, 194(5), 635-647. DOI: https://doi.org/10.1080/00986440600992701
- Eck, B., Maurer, G. (2003) Modeling of phase equilibria for the evaporative precipitation of methacrylic acid and acetic acid from aqueous solutions. Fluid Phase Equilibrium, 2, 281-307. DOI: https://doi.org/10.1016/S0378-3812(03)00128-6
- Chein-Hsiun, Tu., Yuh-Shen, Wu., Tzu-Ling, Liu (1997). Isobaric vapor-liquid equilibria of the methanol, methyl acetate and methyl acrylate system at atmospheric pressure. Fluid Phase Equilibria, 135, 97- 108. DOI: https://doi.org/10.1016/S0378-3812(97)00054-X
- Serheiev V. V. (2013). Khimichna termodynamika spoluk akrylovoho riadu: dys. d-ra khim. nauk. Lviv: Lvivskyi natsionalnyi universytet imeni Ivana Franka.
- Boublik, T., Fried, V., Hala, E. (1973). The Vapour pressure of pure substances. Amsterdam etc.: Elsevier.. Chemistry, Technology and Application of Substances, 3(1), 1-8. DOI: https://doi.org/10.23939/ctas2020.01.001
- Wisniak, J., Peralta, R.D., Infante, R., Cortez, G., López, R.G. (2005). Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t=(298.15 and 308.15)K Thermochimica Acta, 437(1-2), 1-6. DOI: https://doi.org/10.1016/j.tca.2005.06.007
- Wisniak, J., Cortez, G., Peralta, R. D., Infante, R., Elizalde, L. E. (2007). Some Thermodynamic Properties of the Binary Systems of Toluene with Butyl Methacrylate, Allyl Methacrylate, Methacrylic Acid and Vinyl Acetate at 20, 30 and 40 °C. Journal of Solution Chemistry, 36(8), 997-1022. DOI: https://doi.org/10.1007/s10953-007-9165-y
- Peralta, R.D., Infante, R., Cortez, G., Wisniak, J. (2007). Densities and derived thermodynamic properties of the binary systems of benzene with butyl methacrylate, allyl methacrylate, methacrylic acid, and vinyl acetate at 298.15 k Chemical Engineering Communications, 194(5), 635-647. DOI: https://doi.org/10.1080/00986440600992701
- Eck, B., Maurer, G. (2003) Modeling of phase equilibria for the evaporative precipitation of methacrylic acid and acetic acid from aqueous solutions. Fluid Phase Equilibrium, 2, 281-307. DOI: https://doi.org/10.1016/S0378-3812(03)00128-6
- Chein-Hsiun, Tu., Yuh-Shen, Wu., Tzu-Ling, Liu (1997). Isobaric vapor-liquid equilibria of the methanol, methyl acetate and methyl acrylate system at atmospheric pressure. Fluid Phase Equilibria, 135, 97- 108. DOI: https://doi.org/10.1016/S0378-3812(97)00054-X
- Boublik, T., Fried, V., Hala, E. (1973). The Vapour pressure of pure substances. Amsterdam etc.: Elsevier.