APPLYING THE POLYVINYLPYRROLIDONE AS A HIGHLY EFFICIENT REDUCTANT AND STABILIZER IN REACTIONS OF SILVER NANOPARTICLES SYNTHESIS

2022;
: 185-190
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Національний університет „Львівська політехніка”

The regularities of silver nanoparticles derivation using polyvinylpyrrolidone as a reducing agent and stabilizer simultaneously have been studied. The silver spherical nanoparticles was confirmed by UV, FT-IR spectroscopy and TEM analysis. The influence of temperature and reagent concentration on the kinetics of silver reduction from argentum salts was determined. Silver-containing composites based on copolymers of polyvinylpyrrolidone and methacrylic esters with silver nanoparticles in the form of porous blocks and films were synthesized. Also their high bactericidal and fungicidal properties were revealed. The developed porous composites are recommended for application in medicine to replace damaged bone tissue in the processes of osteogenesis.

  1. Sharma, V. K., Yngard, R. A., Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 145, 83-96. DOI: 10.1016/j.cis.2008.09.002. https://doi.org/10.1016/j.cis.2008.09.002
  2. Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182. DOI: 0.1016/j.jcis.2004.02.012. https://doi.org/10.1016/j.jcis.2004.02.012
  3. Rai, M., Yadav, A., Gade, A. (2009). Silver nano- particles as a new generation of antimicrobials. Biotechnol. Adv., 27,76-83. DOI: 10.1016/j.biotechadv.2008.09.002. https://doi.org/10.1016/j.biotechadv.2008.09.002
  4. Ray, S., Mohan, R., Singh, J.K., Samantaray, M.K., Shaikh, M.M., Panda, D., Ghosh, P. (2007). Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am Chem. Soc., 129:15042-15053. DOI: 10.1021/ja075889z. 
  5. Lee, H.Y., Park, H.K., Lee, Y.M., Kim, K., Park, S.B. (2007). A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun, 28, 2959-2961. DOI: 10.1039/b703034g.
  6. Zhang Y., Peng H., Huang W., Zhou Y., Yan D. (2008). Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface                Sci.,                325,371-376.               DOI: 10.1016/j.jcis.2008.05.063.
  7. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R. (2006). Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B., 110, 16248-16253. DOI: 10.1021/jp063826h.
  8. Pal S., Song J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ Microbiol., 73, 1712-1720. DOI: 10.1128/AEM.02218-06.
  9. Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prusek, R., Holecova, M., Zboril, R. J. (2008). Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Phys. Chem. C., 112, 5825. DOI: 10.1021/jp711616v.
  10. Wang, H., Qiao, X., Chen, J., Ding, Sh. (2005). Preparation of silver nanoparticles by chemical reduction method. Colloid Surfaces Physicochem Eng Aspect., 256, 111-115. DOI: 10.1016/j.colsurfa.2004.12.058.
  11. Zielinska, A., Skwarek, E., Zaleska, A., Gazda, M., Hupka, J. (2009). Preparation of silver nanoparticles with controlled particle size Procedia Chem., 1, 1560-1566. DOI: 10.1016/j.proche.2009.11.004.
  12. Huang, H. H., Ni X. P., Loy G. L., Chew C. H., Tan K. L., Loh F. C., Deng J. F., Xu G. Q. (1996). Photochemical Formation of Silver Nanoparticles in Poly(N- vinylpyrrolidone). Langmuir, 12, 909-912. DOI: 10.1021/la950435d.
  13. Carotenuto, G. (2001). Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Appl Organomet Chem., 15, 344. DOI: 10.1002/aoc.165.
  14. Sheikh, N., Akhavan, A., Kassaee, M. Z. (2009). Synthesis of antibacterial silver nanoparticles by γ-irradiation. Physica E., 42, 132-135. DOI: 10.1016/j.physe.2009.09.013.
  15. Li, T., Park, H. G., Choi, S-H. (2007). γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys., 105, 325- 330. DOI: 10.1016/j.matchemphys.2007.04.069.
  16. Shin, H. S., Yang, H. J., Kim, S. B., Lee, M. S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ- irradiated silver nitrate solution. J. Colloid Interface Sci., 274, 89-94. DOI: 10.1016/j.jcis.2004.02.084.
  17. Tsuji, T., Thang, D-H., Okazaki, Y., Nakanishi, M., Tsuboi, Y., Tsuji, M. (2008). Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci., 254, 5224-5230. DOI: 10.1016/j.apsusc.2008.02.048.
  18. Dudok, G., Semenyuk, N., Skorokhoda, T., Melnyk, Yu., Shalata, V. (2021). Research of the regularities of obtaining silver nanoparticles with applying of  polyvinylpyrolidone and their effect on composite's fungibactericidal properties. Visnyk NU "Lvivska politekh- nika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1, 237-242. doi.org/10.23939/ctas2021.01.237.
  19. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother., 61, 869-876. DOI: 10.1093/j ac/dkn034.
  20. Skorokhoda, V., Semeniuk, N., Dziaman, I. (2018). Vplyv pryrody kaltsiievmisnoho napovniuvacha na zakonomirnosti oderzhannia ta vlastyvosti osteoplastychnykh porystykh kompozytiv. Voprosy khymyy y khymycheskoi tekhnolohyy, 2(117), 101-108.