COMPLEX HYDROGELS BASED ON AQUASOL AND POLYACRYLAMIDE

2022;
: 196-201
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The paper describes the production of hydrogel composites, which are crosslinked structures based on polyacrylamide and poly-2-ethyl-2-oxazoline (aquazole); study of the kinetics of swelling of the obtained hydrogels and study of the thermomechanical properties of the obtained material. The method of synthesis of hydrogel composites and their physicochemical and thermomechanical properties and graphic representation of these laws considered was present. A number of samples with different ratios of starting materials synthesized and the dependence of their properties on the structure was established.

  1. Daniele M. A., Adams A. A., Naciri J., S North. H. & Ligler F. S. (2014). Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds, Biomaterials, 35, 1845-1856. https://doi.org/10.1016/j.biomaterials.2013.11.009
  2. Azami M., Moosavifar M. J., Baheiraei N., Moztarzadeh F. & Ai J. (2012). Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid, J. Biomed. Mater. Res. A., 100, 1347-1355. https://doi.org/10.1002/jbm.a.34074
  3. Emami, Z., Ehsani, M., Zandi, M., Foudazi, R. (OCT 15 2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels, Carbohydrate Polymers, 198, 509-517. https://doi.org/10.1016/j.carbpol.2018.06.080
  4. Lowman A. M. & Peppas N. A. (1999). Hydro- gels. Encyclopedia Controlled Release., 1, (397-418.
  5. Peppas N. A., Bures P., Leobandung W. & Ichikawa H. (2000, July). Hydrogels in pharmaceutical formulations. Eur J. Pharm Biopharm, 50(1), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
  6. Suvarna Kurhade, Munira Momin, Pallavi Khanekar & Supriya Mhatre (2013). Novel Biocompatible Honey Hydrogel Wound Healing Sponge for Chronic Ulcers, International Journal of Drug Delivery, 5, 353-361.
  7. Habiboallah G., Nasroallah S. & Mahdi Z. (2008). Histological evaluation of Curcuma longa-ghee formulation and hyaluronic acid on gingival healing in dog. Journal of Ethnopharmacology, 120, 335-341. https://doi.org/10.1016/j.jep.2008.09.011
  8. Kim G. H., Kang Y. M. & Kang K. N. (2011). Wound. Dressings for Wound Healing and Drug, Delivery, Tissue Engineering and Regenerative Medicine, 8(1), 1-7.
  9. Orsini S., Nasa J. La, Modugno F., Colombini M. P. (2013). Characterization of Aquazol polymers using techniques based on pyrolysis and mass spectrometry. J. Anal. Appl. Pyrolysis, 104, 218-225.  https://doi.org/10.1016/j.jaap.2013.07.012
  10. Colombo A., Tassone F., Mauri M., Salerno D., Delaney J. K., Palmer M R., Ried R. De La, Simonutti R. (2012). Highly transparent nanocomposite films from water-based poly(2-ethyl-2-oxazoline)/TiO2 dispersions. RSC Adv. 2, 6628-6636. https://doi.org/10.1039/c2ra20571h
  11. Ebert B., Singer B., Grimaldi N. (2012). Aquazol as a Consolidant for matte paint on Vietnamese paintings. Journal of the institute of conservation. J. Inst. Conserv., 35, 62-76. https://doi.org/10.1080/19455224.2012.672813
  12. Dworak A., Utrata-Wesołek A., Oleszko N., Wałach W., Trzebicka B., Anioł J., Sieron A. L., Klama- Baryła A., Kawecki M. (2014). Poly(2-substituted-2- oxazoline) surfaces for dermal fibroblasts adhesion and detachment. J. Mater. Sci. Mater. Med., 25, 1149-1163. https://doi.org/10.1007/s10856-013-5135-7
  13. Viegas T. X., Bentley M. D., Milton Harris J., Fang Z., Yoon K., Dizman B., Weimer R., Mero A., Pasut G., Veronese F. M. (2011). Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem., 22, 976-986. https://doi.org/10.1021/bc200049d
  14. Konradi R., Pidhatika B., Mühlebach A., Textor M. (2008). Poly-2-methyl-2-oxazoline: a peptide-like poly- mer for protein-repellent surfaces. Langmuir, 24, 613-616. https://doi.org/10.1021/la702917z
  15. Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Mühlebach A., Acikgöz C., Textor M., Konradi R. (2012). Comparative stability studies of poly(2- methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases, 7, 1. https://doi.org/10.1007/s13758-011-0001-y
  16. Chen Y., Pidhatika B., T. von Erlach, Konradi R., Textor M., Hall H., Lühmann T. (2014). Comparative assessment of the stability of Nonfouling poly(2-methyl-2- oxazoline) and poly(ethylene glycol) surface films: an in vitro cell culture study. Biointerphases, 9, 031003. https://doi.org/10.1116/1.4878461
  17. Luxenhofer R., Schulz A., Roques C., Li S., Bronich T. K., Batrakova E. V. et al. (2010). Doubly amphiphilic poly (2-oxazoline) s as high-capacity delivery systems for hydrophobic drugs. Biomaterials, 31, 4972-9. https://doi.org/10.1016/j.biomaterials.2010.02.057