The heat transfer of the “water – Al2O3” nanofluid in the Ø 32 × 3 mm horizontal Slinky collector of spiral configuration of a heat pump have been studied. Nanofluid has good characteristics for use in the energy sector due to its high thermal properties. Studies were performed in the range of changes in the concentration of nanoparticles from 0.38 to 1.3 % vol. for the energy system of an energy-independent building, in particular, for the heating and non-heating periods of the heat supply system for the Kyiv region.
- Kizilova, N. M., & Tkachenko, Y. D. (2018). Features of heat and mass exchange in laminar flows of micro and nanofluids in tubes and channels. Visnyk Kyivskoho natsionalnoho universytetu im. T. Shevchenka. Seriia: fizyko-matematychni nauky, 4, 62-67 (in Ukrainian) https://doi.org/10.17721/1812-5409.2018/4.9
- Rymar, T. (2021). Heat exchange and hydrodynamic characteristics of unified package of cold layer of RAH. NTU "KhPI" Bulletin: Power and Heat Engineering Processes and Equipment, 3, 51-54. DOI: 10.20998/2078-774X.2021.03.07 (in Ukrainian). https://doi.org/10.20998/2078-774X.2021.03.07
- Wang, Z., Wu, Z., Han, F., Wadsö, L., & Sunden, (2018). Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. International Journal of Thermal Sciences, 130, 148-156. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.021
- Kim, H. J., Lee, S. H., Lee, J. H., & Jang, S. P. (2015). Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy, 90, 1290-1297. DOI: https://doi.org/10.1016/j.energy.2015.06.084
- Gupta, M., Singh, V., Kumar, R., & Said, Z. (2017). A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638-670. DOI: https://doi.org/10.1016/j.rser.2017.02.073
- Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11, 151-170. DOI: https://doi.org/10.1080/08916159808946559
- Heris, S. Z., Etemad, S. G., & Esfahan, M. N. (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529-535. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
- Williams, W., Buongiorno, J., & Wen, Hu. L. (2008). Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (Nanofluids) in horizontal tube. Journal of Heat Transfer, 130(4), 42412- 42419. DOI: https://doi.org/10.1115/1.2818775
- Xuan, Y., & Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluid. Journal of Heat Transfer, 125(1), 151-155. DOI: https://doi.org/10.1115/1.1532008
- Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
- Rymar, T., Kazmiruk, M. & Shyika I. (2021). The Efficiency of Nanofluid Use in the Heat Supply System of a House with a Geothermal Heat Pump, 11th International Conference Nanomaterials: Applications & Properties (NAP). Odessa, Ukraine: IEEE. DOI: https://doi.org/10.1109/NAP51885.2021.9568625
- Rymar, T. (2022). Use of water-TiO2 nanofluid in horizontal Slinky collector of heat pump. Energy Engineering and Control Systems, 8(1), 7-14. DOI: https://doi.org/10.23939/jeecs2022.01.007
- Bock, Choon Pak & Young, I. Cho (1998). Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles. Experimental Heat Transfer, 11(2), 151-170. DOI: https://doi.org/10.1080/08916159808946559
- Vasylenko, S. M., Ukrainets, A. I., & Olishevsky, V. V. (2004). Basics of heat and mass transfer. Kyiv: NUKHT (in Ukrainian).