The paper presents the study results of the molecular weight effect of polyvinylpyrrolidone (PVP) on the properties of composite hydrogels/polycaproamide membranes, which were obtained by modifying hydrogel films based on copolymers of 2-hydroxyethylmethacrylate (HEMA) with PVP by applying ultra- thin layers on the basis of a polyamide (PA-6) with PVP mixture. It was found that the interaction magnitude between the layers of composite membranes, as well as their properties – water content, tensile strength, salt and water permeability coefficients, largely depend on the molecular weight of PVP as in the original polymer-monomer composition and in the modifying PA-6/PVP solution.
- Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. DOI: https://doi.org/10.1016/j.addr.2012.09.010
- Chobit, M. R. (2018). Zastosuvannia peroksydovanykh polisakharydiv dlia oderzhannia hidrohelevykh kompozytiv. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1 (1), 139-144. doi.org/10.23939/ctas2018.01.139
- Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., & Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLоS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484
- Larrañeta, E., Stewart, S., Ervine, M., Al- Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
- Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154-174. https://doi.org/10.1515/secm-2017-0161
- Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 3-10. doi.org/10.20998/2078- 5364.2020.4.01.
- Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475-1486. DOI:https://doi.org/10.1080/03602559.2011.593082
- Mel'nyk, Yu. Ya., Baran, N. M., Yatsul'chak, H. V., & Komyshna M. H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU "LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412.
- Avramenko, V. L, Pidgorna, L. P, Cherkashchyna, G. M, & Bliznyuk, O. V. (2018). Technology of production and processing of polymers for medical and biological purposes: monograph. Kharkiv: Technology Center, 356. https://doi.org/10.15587/978-617-7319-17-6
- Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 45-54. DOI: https://doi.org/10.32434/0321-4095-2021-134-1-45-54
- Varvarenko, S., Voronov, А., Samaryk, V., Tarnavchyk, I., Nosova, N., Kohut, A., & Voronov, S. (2010). Covalent grafting of polyacrylamide-based hydrogels to a polypropylene surface activated with functional polyperoxide. Reactive and Functional Polymers, 70(9), 647-655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
- Przyluski, J., Poitarzewski, Z., & Wieczorek, W. (1997). Proton-conducting hydrogel membranes. Polymer, 39(18), 4343-4347. https://doi.org/10.1016/S0032-3861(97)00525-9
- Fomina, A. P., Lesovoj, D. E., Artyuhov, A. A., & Shtilman M. I. (2011). Biodegradiruemye polimernye gidrogeli na osnove proizvodnyh krahmala i polivinilovogo spirta. Uspehi v himii i himicheskoj tehnologii, 3(19), 83-87.
- Minko, S. (2006). Responsive Polymer Brushes. J. of Macromolecular Science, Part C: Polymer Reviews, 46, 397-420. DOI: https://doi.org/10.1080/15583720600945402
- Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogel, 136-214. London, UK: IntechOpen. DOI: https://doi.org/10.5772/intechopen.72082
- Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397. https://doi.org/10.1007/s11003-017-0087-6
- Montheard, J., Chatzopoulos, M., & Chappard, D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1-34. https://doi.org/10.1080/15321799208018377
- Yanez, F., Concheiro, A., & Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP-pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094- 1103. https://doi.org/10.1016/j.ejpb.2008.01.023
- Malešić, N., Rusmirović, J., & Jovašević, J. (2014). Antimicrobial Hydrogels Based on 2- hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563-568. DOI: https://doi.org/10.5937/tehnika1404563M
- Prasitsilp, M., Siriwittayakorn, T., Molloy, R., Suebsanit, N., Siriwittayakorn, P., & Veeranondha, S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595-600. https://doi.org/10.1023/A:1024066806347
- Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923-943. https://doi.org/10.1080/03602559.2014.979506
- Baran, N. M., Grytsenko, O. M., Mel'nyk, Yu. Ya., Yatsul'chak, H. V. (2021). Osoblyvosti oderzhannya ta vlastyvosti kombinovanykh hidrohelevykh membran na osnovi polikaproamidu i kopolimeriv polivinilpirolidonu. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(2), 203-209. https://doi.org/10.23939/ctas2021.02.203
- Baran, N. M., Mel'nyk, Yu. Ya., Suberlyak, S. A., Yatsul'chak, H. V., & Zemke, V. M. (2018). Formuvannya kompozytsiynykh plivkovykh hidrohelevykh membran. Visnyk Natsional'noho universytetu "L'vivs'ka politekhnika". Seriya: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 1(2), 132-135. https://ena.lpnu.ua/handle/ntb/46344
- Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
- Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. DOI: https://doi.org/10.23939/chcht09.04.429
- Dubyaga, V. P., Perepechkin, L. P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.
- Ahmed Enas M., Aggor Fatma S., Awad Ahmed M., & El-Aref Ahmed T. (2013). An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym., 91, 693-698. https://doi.org/10.1016/j.carbpol.2012.08.056
- Suberlyak O. V., Baran N. M., Melnyk Yu. Ya., Grytsenko O. M., & Yaculchak G. V. (2020). Regularities of strengthening of film hydrogel membranes based on 2- hydroxyetylmetacrylate copolymers and polyvinylpyrrolidone. Functional Materials, 27(2), 329-333. DOI: https://doi.org/10.15407/fm27.02.329