INFLUENCE OF POLYVINYLPYRROLIDONE MOLECULAR WEIGHT ON THE SORPTION AND PHYSICAL-MECHANICAL PROPERTIES OF HYDROGEL/POLYCAPROAMIDE TWO-LAYER MEMBRANES

2022;
: 171-177
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

The paper presents the study results of the molecular weight effect of polyvinylpyrrolidone (PVP) on the properties of composite hydrogels/polycaproamide membranes, which were obtained by modifying hydrogel films based on copolymers of 2-hydroxyethylmethacrylate (HEMA) with PVP by applying ultra- thin layers on the basis of a polyamide (PA-6) with PVP mixture. It was found that the interaction magnitude between the layers of composite membranes, as well as their properties – water content, tensile strength, salt and water permeability coefficients, largely depend on the molecular weight of PVP as in the original polymer-monomer composition and in the modifying PA-6/PVP solution.

  1. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. DOI: https://doi.org/10.1016/j.addr.2012.09.010
  2. Chobit, M. R. (2018). Zastosuvannia peroksydovanykh polisakharydiv dlia oderzhannia hidrohelevykh kompozytiv. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 1 (1), 139-144. doi.org/10.23939/ctas2018.01.139
  3. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., & Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLоS               ONE,                          14(5),     e0216484. https://doi.org/10.1371/journal.pone.0216484
  4. Larrañeta, E., Stewart, S., Ervine, M., Al- Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
  5. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154-174. https://doi.org/10.1515/secm-2017-0161
  6. Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 3-10. doi.org/10.20998/2078- 5364.2020.4.01.
  7. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475-1486. DOI:https://doi.org/10.1080/03602559.2011.593082
  8. Mel'nyk, Yu. Ya., Baran, N. M., Yatsul'chak, H. V., & Komyshna M. H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU "LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412.
  9. Avramenko, V. L, Pidgorna, L. P, Cherkashchyna, G. M, & Bliznyuk, O. V. (2018). Technology of production and processing of polymers for medical and biological purposes: monograph. Kharkiv: Technology Center, 356. https://doi.org/10.15587/978-617-7319-17-6
  10. Maikovych, O. V., Nosova, N. G., Yakoviv, M. V., Varvarenko, S. M., & Voronov, S. A. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 45-54. DOI: https://doi.org/10.32434/0321-4095-2021-134-1-45-54
  11. Varvarenko, S., Voronov, А., Samaryk, V., Tarnavchyk, I., Nosova, N., Kohut, A., & Voronov, S. (2010). Covalent grafting of polyacrylamide-based hydrogels to a polypropylene surface activated with functional polyperoxide. Reactive and Functional Polymers, 70(9), 647-655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
  12. Przyluski, J., Poitarzewski, Z., & Wieczorek, W. (1997). Proton-conducting hydrogel membranes. Polymer, 39(18), 4343-4347. https://doi.org/10.1016/S0032-3861(97)00525-9
  13. Fomina, A. P., Lesovoj, D. E., Artyuhov, A. A., & Shtilman M. I. (2011). Biodegradiruemye polimernye gidrogeli na osnove proizvodnyh krahmala i polivinilovogo spirta. Uspehi v himii i himicheskoj tehnologii, 3(19), 83-87.
  14. Minko, S. (2006). Responsive Polymer Brushes. J. of Macromolecular Science, Part C: Polymer Reviews, 46, 397-420. DOI: https://doi.org/10.1080/15583720600945402
  15. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogel, 136-214. London, UK: IntechOpen. DOI: https://doi.org/10.5772/intechopen.72082
  16. Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials  Science,                                53(3), 392-397. https://doi.org/10.1007/s11003-017-0087-6
  17. Montheard, J., Chatzopoulos, M., & Chappard, D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1-34. https://doi.org/10.1080/15321799208018377
  18. Yanez, F., Concheiro, A., & Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP-pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094- 1103. https://doi.org/10.1016/j.ejpb.2008.01.023
  19. Malešić, N., Rusmirović, J., & Jovašević, J. (2014). Antimicrobial Hydrogels Based on 2- hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563-568. DOI: https://doi.org/10.5937/tehnika1404563M
  20. Prasitsilp, M., Siriwittayakorn, T., Molloy, R., Suebsanit, N., Siriwittayakorn, P., & Veeranondha, S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595-600. https://doi.org/10.1023/A:1024066806347
  21. Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923-943. https://doi.org/10.1080/03602559.2014.979506
  22. Baran, N. M., Grytsenko, O. M., Mel'nyk, Yu. Ya., Yatsul'chak, H. V. (2021). Osoblyvosti oderzhannya ta vlastyvosti kombinovanykh hidrohelevykh membran na osnovi polikaproamidu i kopolimeriv polivinilpirolidonu. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(2), 203-209. https://doi.org/10.23939/ctas2021.02.203
  23. Baran, N. M., Mel'nyk, Yu. Ya., Suberlyak, S. A., Yatsul'chak, H. V., & Zemke, V. M. (2018). Formuvannya kompozytsiynykh plivkovykh hidrohelevykh membran. Visnyk Natsional'noho universytetu "L'vivs'ka politekhnika". Seriya: Khimiya, tekhnolohiya rechovyn ta yikh                zastosuvannya,      1(2),       132-135. https://ena.lpnu.ua/handle/ntb/46344
  24. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
  25. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology,        9,       429-434.              DOI: https://doi.org/10.23939/chcht09.04.429
  26. Dubyaga,   V.    P.,    Perepechkin,    L.    P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.
  27. Ahmed Enas M., Aggor Fatma S., Awad Ahmed M., & El-Aref Ahmed T. (2013). An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel.     Carbohydr     Polym.,      91,      693-698. https://doi.org/10.1016/j.carbpol.2012.08.056
  28. Suberlyak O. V., Baran N. M., Melnyk Yu. Ya., Grytsenko O. M., & Yaculchak G. V. (2020). Regularities of strengthening of film hydrogel membranes based on 2- hydroxyetylmetacrylate    copolymers          and polyvinylpyrrolidone. Functional Materials, 27(2), 329-333. DOI: https://doi.org/10.15407/fm27.02.329