There is described the influence of polyethylenimine globule structure on complexation with copper (II), nickel (II) and cobalt (II) ions. There are determined the values of the coordination number with the change of the pH of the solution for the complexes of ethylenediamine, diethylenetriamine and polyethylenimine with metal ions. It is investigated that the complexation of these metal ions with low molecular weight amines passes through three stages and with PEI through two stages. It is shown that the content of free nitrogen atoms in PEI, which do not react with metal ions, increases with increasing concentration of PEI in solution. The number of monomer units associated with metal ions depends on the size of the globule of the macromolecule, as well as the reaction process. The complexation reaction in solution is determined by the diffusion of metal ions into the polymer globule. If the reaction takes place in a diffusion field at a low polymer concentration, the rate of complexation is proportional to the concentration of macromolecules and the concentration of metal ions in solution.
- Niu S., Hall M. B. (2000). Theoretical studies on reactions of transition-metal complexes. Chemical Reviews, 100(2), 353-406. DOI: 10.1021/cr980404y. https://doi.org/10.1021/cr980404y
- Swiegers G. F., Malefetse T. J. (2000). New Self-Assembled Structural Motifs in Coordination Chemistry.Chemical Reviews. Sep. 15;100(9):3539. DOI: 10.1021/cr990110s. https://doi.org/10.1021/cr990110s
- Hush N. S., Reimers J. R. (2000). Solvent effects on the electronic spectra of transition metal complexes. Chemical Reviews, 100(2), 775-796. DOI: 10.1021/cr980409v. https://doi.org/10.1021/cr980409v
- Munakata M., Wu P., Kuroda-Sowa T. (1999). Mobility of Silver (I) Ions around the Propeller Ligand, Hexaphenylbenzene (HPB), in Silver(I) π-Complexes. Inorganic Chemistry, 38(25), 5668-5673. doi.org/10.1021/ic990143q. https://doi.org/10.1021/ic990143q
- Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita and Susumu Kitagawa (2007). Three- Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129 (9), 2607-2614. doi.org/10.1021/ja067374y. https://doi.org/10.1021/ja067374y
- Robert W. Elliott, Ashley L. Sutton, Brendan F. Abrahams, Deanna M. D'Alessandro, Lars Goerigk, Carol Hua, Timothy A. Hudson, Richard Robson, Keith F. White. (2021) Multifunctional Coordination Polymer Exhibiting Reversible Mechanical Motion Allowing Selective Uptake of Guests and Leading to Enhanced Electrical Conductivity. Inorganic Chemistry, 60(17), 13658-13668. https://doi.org/10.1021/acs.inorgchem. 1c01979. https://doi.org/10.1021/acs.inorgchem.1c01979
- Jing-Jing Huang, Jie-Hui Yu, Fu-Quan Bai, Ji- Qing Xu. White-Light-Emitting (2018). Materials and Highly Sensitive Detection of Fe3+and Polychlorinated Benzenes Based on Ln-Metal-Organic Frameworks. Crystal Growth & Design, 18(9), 5353- 5364. https://doi.org/10.1021/acs.cgd.8b00773. https://doi.org/10.1021/acs.cgd.8b00773
- Bernabé L. Rivas&Kurt E. Geckeler. Part of the Advances in Polymer Science book series. Polymer, vol. 102, Polymer Synthesis Oxidation Processes, 171- 188. 2005). DOI: 10.1007/3-540-55090-9_6. https://doi.org/10.1007/3-540-55090-9_6
- K. Geckeler, G. Lange, H. Eberhardt and E. Bayer. (2001).Polymer-metal complexes for environ- mental protection. Chemoremediation in the aqueous homogeneous phase. Pure and Applied Chemistry., Vol. 73, No. 1, 129-136. http://dx.doi.org/10.1351/ pac200173010129. https://doi.org/10.1351/pac200173010129
- Chekulayeva J. A., Fonova I. V., Ignatenko A. V., Ponomarenko V. A. (1985). Highmol Compounds (USSR), B27, 601-604. https://ur.booksc.me› book.
- Firlik S., Skupiński W., Wielgosz Z., & Stasiński J. (2015). Application of the copper (II)- aminosilane catalysts in the oxidative polymerization of 2,6-dimethylphenol. Polimery, 60(6), 372-376. https://doi.org/10.14314/polimery.2015.372. https://doi.org/10.14314/polimery.2015.372
- Oliynyk L. P., Makota О. І., Komarenska Z. M., Bernatska N. L. (2021). Іnvestigation of complex formation of cobalt (II) ions with polyacrylic acid. Chemistry, Technology and Application of Substances, Vol. 4, No. 193-198. https://doi.org/10.23939/ctas2021.01.093
- Kislenko V. N., Oliynyk L. P. Treatment of humic acids with ferric, aluminium, and chromium ions in water. Journal of Colloid and interface Science, 269(2004), 388-393. https://doi.org/10.1016/j.jcis.2003.07.040. https://doi.org/10.1016/j.jcis.2003.07.040
- Cotton F. Albert; Wilkinson, Geoffrey (2006). Quimica inorganica avanzada/ Advanced Inorganic Chemistry (Spanish Edition) b. Published by Editorial Limusa S. A. De C. V., p. 59214.
- Chundak S. Iu., Barchii I. Ie. (2019). Osnovy khimii kompleksnykh spoluk: navchalnyi posibnyk. Uzhhorod: Vyd-vo UzhNU "Hoverla" 133 s. ISVN 978- 617-7333-93-6. m. Uzhhorod, Ukraina.
- Aslışah Açıkses, Necmittin Çömez and Fatih Biryan.(2018). Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes. Hindawi International Journal of Polymer Science Vol. 2018, Article ID 6703783, 15 p. https://doi.org/10.1155/ 2018/6703783. https://doi.org/10.1155/2018/6703783
- Pomohailo A. D. Rozenberh A. S., Ufliand Y. E. (2000). Nanochastytsы metallov v polymerakh. Moskva: Khymyia.
- Lázaro-Martínez J. M., Monti G. A., Chattah A. K. (2013). Insights into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. Polymer, 54(19), 5214-5221. https://doi.org/10.1016/j.polymer.2013.07.036
- Annenkov V. V., Danilovtseva E. N., Saraev V. V., Mikhaleva A. I. (2003). Complexation of copper (II) ions with imidazole-carboxylic polymeric systems. Journal of Polymer Science Part A: Polymer Chemistry. 41, 2256. DOI: 10.1002/pola.10769 https://doi.org/10.1002/pola.10769