RESEARCH OF OIL SORPTION BY NATURAL CLINOPTYLOLITE

2022;
: 58-64
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
LTD “AKS Mineral”

The sorption capacity of natural clinoptilolite of the Transcarpathian field in relation to the Boryslav field oil has been studied. It is shown that the sorption of oil occurs almost immediately after its contact with clinoptilolite. This forms the absorption front, which moves up the zeolite layer. Based on the analysis of the sorption process, it was concluded that lighter fractions of oil are sorbed faster and play the role of "solvent" for heavier fractions. It is shown that the sorption capacity of initial clinoptilolite is slightly higher than that of thermally activated. It was found that with increasing dispersion of clinoptilolite the mass of sorbed oil increases significantly, but the sorption capacity of different fractions, taking into account the height of the working layer differs slightly.

  1. O. Ya. Pylypchuk, T. I. Vysots'ka, T. V. Pichkur (2020). Znyzhennya vplyvu zaliznychnoho transportu na navkolyshnye seredovyshche: problema ochyshchennya gruntu vid naftoproduktiv. Ekolohichni nauky. 3(30), 113- 118.  (in Ukrainian) https://doi.org/10.32846/2306-9716/2020.eco.3-30.19
  2. N. I. Hlibovyts'ka, L. V. Plaksiy. (2019). Efektyvnist' pohlynannya nafty sorbentamy pryrodnoho ta shtuchnoho pokhodzhennya. Naukovyy visnyk NLTU Ukrayiny, 29 (6), 76-78.  (in Ukrainian) https://doi.org/10.15421/40290615
  3. L. V. Krychkovs'ka, Ye. A. Yelnahhar, V. L. Dubonosov. (2019). Poshuky sorbentiv dlya elyuatsiyi naftoproduktiv z vody. Visnyk Natsional'noho tekhnich- noho universytetu "KhPI" Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya. 2, 47-52.  (in Ukrainian) https://doi.org/10.20998/2079-0821.2019.02.07
  4. M. S. Mal'ovanyy, I. M. Petrushka. (2012). Ochyshchennya stichnykh vod pryrodnymy dyspersnymy sorbentamy. L. : Vyd-vo L'viv. politekhniky, 180 р. (in Ukrainian)
  5. E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, S.B. Darling. (2017). Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A, 5, 2929-2935. https://doi.org/10.1039/C6TA09014A
  6. S. Bayraktaroglu, S. Kizil, H. B. Sonmez. (2021). A highly reusable polydimethylsiloxane sorbents for oil/organic solvent clean-up from water. Journal of Environmental Chemical Engineering, 9 (5), 106002. https://doi.org/10.1016/j.jece.2021.106002
  7. J. Wang, H. Wang, G. Geng. (2018). Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar. Pollut. Bull. 127, 108- 116. https://doi.org/10.1016/j.marpolbul.2017.11.060
  8. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot. (2003). Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 10, 159-170. https://doi.org/10.1023/A:1027484117065
  9. P. Narayanan, A. Ravirajan, A. Umasankaran, D.G. Prakash, P.S. Kumar. (2018). Theoretical and experimental investigation on the removal of oil spill by selective sorbents. J. Ind. Eng. Chem. 63, 1-11. https://doi.org/10.1016/j.jiec.2018.01.031
  10. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang. (2011). Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environ. Sci. Technol. 45. 4527-4531. https://doi.org/10.1021/es2002343
  11. E. Piperopoulos, L. Calabrese, A. Khaskhoussi, E. Proverbio, C. Milone. (2020). Thermo-Physical Characterization of Carbon Nanotube Composite Foam for Oil Recovery Applications. Nanomaterials, 10, 86. https://doi.org/10.3390/nano10010086
  12. Sabir Syed. (2015). Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Critical Reviews in Environmental Science and Technology, 45(17), DOI: https://doi.org/10.1080/10643389.2014.1001143
  13. D. Zadaka-AmirNimrod, B.Y.G.Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous and Mesoporous Materials. 169, 153-159. https://doi.org/10.1016/j.micromeso.2012.11.002
  14. P. Qi, N. Lin, Y. Liu, J. Zhao. (2013). Improvement of oil/water selectivity by stearic acid modified expanded perlite for oil spill cleanup. J. Shanghai Jiaotong Univ., 18, 500-507. https://doi.org/10.1007/s12204-013-1426-x
  15. D. Zadaka-Amir, N. Bleiman, Y.G. Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater., 169, 153-159. https://doi.org/10.1016/j.micromeso.2012.11.002
  16. T. Paulauskienė, I. Jucikė. (2015). Aquatic oil spill cleanup using natural sorbents. Environmental Science and Pollution Research, 22, 14874-14881 https://doi.org/10.1007/s11356-015-4725-y
  17. A. S. Hrabarovs'ka, Z. O. Znak, R. R. Olenych. (2018). Doslidzhennya aktyvuvannya pryrodnoho klynoptylolitu nadvysokochastotnymy elektromahnitnymy vyprominyuvannyamy. Chemistry, Technology and Application of Substances, 1 (2). 21-26.  (in Ukrainian) https://doi.org/10.23939/ctas2018.02.021