Formation and properties of cross-linked polyacrylamide hydrogels with cds nanoparticles

2023;
: 154-160
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The new method of obtaining nanocomposite hydrogels with embedded mineral nanoparticles has been proposed. CdS nanoparticles have been synthesized in situ in hydrogel matrix based on the copolymer of acrylamide and acrylic acid under the conditions of diffusion fluxes of Cd2+  та S2-  structure-forming ions. The formation of CdS nanoparticles in polymeric matrix has been approved by the methods of XRD, energy- dispersive  analysis,  UV-spectroscopy.  The  influence  of  the  content  of  polymer  matrix  onto  physico- mechanical properties of hydrogel has been studied.

1. Gaharwar, A. K., Peppas, N. A. Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applica- tions. Biotechnology and Bioengineering, 111(3), 441-453. doi:10.1002/bit.25160.
https://doi.org/10.1002/bit.25160
2. Ha, Y., Shih, H., Munoz, Z., Kemp, A. Lin, C. C. (2014). Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 10(1), 104-114. doi: 10.1016/j.actbio.2013.08.044.
https://doi.org/10.1016/j.actbio.2013.08.044
3. Haraguchi, K. (2007). Nanocomposite hydrogels. Current Opinion in Solid State and Materials Science, 11(3), 47-54. doi: 10.1016/j.cossms.2008.05.001.
https://doi.org/10.1016/j.cossms.2008.05.001
4. Gao, F. (еd.). (2012). Advances in Polymer Nano- composites: Types and Applications.  Philadelphia:  Wood- head Publishing.
5. Haraguchi, K. Takehisa, T. (2002). Nanocomposite hydrogels:  A  unique  organic-inorganic  network  structure with extraordinary mechanical, optical, and swell- ing/deswelling   properties.   Advanced   Materials,   14(16), 1120-1124.     doi:     10.1002/1521-4095(20020816)14:16<1120::AID-DMA1120>3.0.CO;2-9.
https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
6. Merino, S., Martín, C., Kostarelos, K., Prato, M. Vazquez, E. (2015). Nanocomposite hydrogels: 3D polymer- nanoparticle synergies for  on-demand drug delivery.  ACS Nano, 9(5), 4686-4697. doi: 10.1021/acsnano.5b01433.
https://doi.org/10.1021/acsnano.5b01433
7. Rafieian, S., Mirzadeh, H., Mahdavi, H. Masoumi M. E. (2019). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite  Materials,  26(1), 154-174. doi: 10.1515/secm-
https://doi.org/10.1515/secm-2017-0161
2017-0161.
8. Haraguchi, K., Farnworth, R., Ohbayashi, A. Take- hisa, T. (2003). Compositional effects on mechanical proper- ties  of nanocomposite hydrogels  composed  of poly(N,N- dimethylacrylamide)  and  clay.  Macromolecules,  36(15), 5732-5741. doi: 10.1021/ma034366i.
https://doi.org/10.1021/ma034366i
9. Haraguchi, K., Takehisa, T. Fan, S. (2002). Effects of clay content on the properties of nanocomposite hydrogels composed of poly (n-isopropylacrylamide) and clay. Macro- molecules, 35(27), 10162-10171. doi: 10.1021/ma021301r.
https://doi.org/10.1021/ma021301r
10. Marcelo, G., Lopez-Gonzalez, M., Mendicuti, F., Tarazona, P. Valiente, M. (2014). Poly(N-isopropyl- acrylamide)/gold hybrid hydrogels prepared by catechol redox chemistry. characterization and smart tunable catalytic activity.    Macromolecules,    47(17),    6028-6036.    doi:10.1021/ma501214k.
https://doi.org/10.1021/ma501214k
11.  Chang,  C.,  Peng,  J.,  Zhang,  L.  Pang,  D.-W. (2009). Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chem- istry, 19(41), 7771-7776. doi:10.1039/b908835k.
https://doi.org/10.1039/b908835k
12. Zhang, J. Wang, Z. (2022). Nanoparticle-hydrogel based sensors: synthesis and applications.Catalysts, 12, 1096. doi: 10.3390/catal12101096.
https://doi.org/10.3390/catal12101096
13. Guo, J., Zhou, B., Du, Z., Yang, C., Kong, L. Xu, L. (2021). Soft and plasmonic hydrogel optical probe for glucose monitoring. Nanophotonics, 10(13), 3549-3558. doi:10.1515/nanoph-2021-0360.
https://doi.org/10.1515/nanoph-2021-0360
14. Guo, M. Jiang, M. (2010). Supramolecular hy- drogels with CdS quantum dots incorporated by host-guest interactions.  Macromolecular  Rapid  Communications,  31,1736-1739. doi: 10.1002/marc.201000255.
https://doi.org/10.1002/marc.201000255
15. Yang, J., Gao, J., Wang, X., Mei, S., Zhao, R., Hao, C., Liu, Y. (2017). Polyacrylamide hydrogel as a tem- plate in situ synthesis of CdS nanoparticles with high photo- catalytic activity and photostability. Journal of Nanoparticle Research, 19, 350. doi: 10.1007/s11051-017-4048-7.
https://doi.org/10.1007/s11051-017-4048-7
16. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J. Loh, X. J. (2015). Nanoparticle-hydrogel composites: con- cept, design, and applications of these promising, multi- functional  materials.  Advansed  Science,  2(1),  1400010-1-1400010-13. doi: 10.1002/advs.201400010.
https://doi.org/10.1002/advs.201400010
17. Shevchuk, O., Bukartyk, N., Chobit, M. Tokarev, V. (2021). Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. Journal of  Polymer  Research,  28,  331.  doi:  10.1007/s10965-021- 02662-3.
https://doi.org/10.1007/s10965-021-02662-3
18. Dannert, C., Stokke, B. T. Dias, R. S. (2019). Nanoparticle-hydrogel composites: from molecular interac- tions to macroscopic behavior. Polymers, 11(2), 275. doi: 10.3390/polym11020275.
https://doi.org/10.3390/polym11020275
19. Wang, C., Flynn, N. T., Langer, R. (2004). Con- trolled structure and properties of thermoresponsive nanopar- ticle-hydrogel   composites.   Advanced   Materials,   16(13), 1074-1079. doi: 10.1002/adma.200306516.
https://doi.org/10.1002/adma.200306516
20. Reiss, P., Protiere, M. Li L. (2009). Core/Shell Semiconductor  Nanocrystals.  Small,  5(2),  154-168.  doi: 10.1002/smll.200800841.
https://doi.org/10.1002/smll.200800841
21. Bukartyk, N. M., Chobit, M. R., Borova, S. H., Nadashkevych,  Z.  Y.  Tokarev,  V.  S.  (2016).  Syntez  ta vlastyvosti karboksyl- i aminovmisnyh hidrogeliv na osnovi akrylamidu. Bulletin of Lviv Polytechnic National University. Series: Chemistry, materials technology and their applica- tions,    841,    345-350.    https://science.lpnu.ua/schmt/all- volumes-and-issues/volume-841-2016/sintez-ta-vlastivosti- karboksil-i-aminovmisnih.