The experimental results of the hydrodynamics of filtration of the thermal agent in a stationary layer of granular chalk are given. As a result of the conducted experiments, new calculation dependencies were obtained for determining the hydraulic resistance of a layer of granular chalk depending on the filtering speed of the heat agent and the height of the material layer. Calculation dependencies for determining the coefficient of hydraulic friction were also proposed and its dependence on the Reynolds number was established. This will make it possible to determine pressure losses in the material layer during equipment design and the economic feasibility of modernizing production processes.
1. Tkachenko, M., Borys, N., & Kovalenko, Y. (2020). The effectiveness of granular chalk use for growing winter wheat on Grey Forest Soil. Agrobìologìâ, (1(157), 181-191.
https://doi.org/10.33245/2310-9270-2020-157-1-181-191
2. Monastyrskiy, D. I., Kulikova, M. A., Kolesnikova, T. A., & Volchek, A. P. (2022, February 1). Studies of the features of vacuum drying of organic-mineral fertilizers. IOP Conference Series: Earth and Environmental Science, 981(2), 022015. https://doi.org/10.1088/1755-1315/981/2/022015.
https://doi.org/10.1088/1755-1315/981/2/022015
3. Zamytsky, O. V., & Omelchyk, D. V. (2018). Current methods of drying fine materials. Mining Journal of Kryvyi Rih National University, (103), 190-196.
https://doi.org/10.31721/2306-5435-2018-1-103-190-196
4. Fesenko, A. V. (2006). Improving the efficiency of drying process of crops [Text] : dis. kan. tehn. sciences: 05.05.11/ Andrey Fesenko. - Lugansk,. - 170 p.
5. Susianto, S., Altway, A., Kuswandi, K., & Margono, M. (2010). Effect of Particle Size Distribution on Ammonium Sulphate Dried in a Rotary Dryer. IPTEK: The Journal for Technology and Science. https://doi.org/10.12962/j20882033.v21i3.37
https://doi.org/10.12962/j20882033.v21i3.37
6. Beigi, S., Sobati, M. A., & Jahanbakhsh, S. (2017). Drying of calcium carbonate in a batch spouted bed dryer: optimization and kinetics modeling. Journal of Particle Science & Technology, 3(2), 89-99. https://doi.org/10.22104/jpst.2017.2257.1087
7. Kindzera, D.P., Khanyk, Ya.M., & Atamaniuk, V.M. (2002). Zernystyi material. Hidrodynamika polidyspersnoho sharu. Khimichna promyslovist Ukrainy, (6), 38-42.
8. Atamaniuk, V.M. (2004). Filtratsiine sushinnia. Hidrodynamichnyi opir polidyspersnoho sharu zernystoho materialu. Khimichna promyslovist Ukrainy, (6), 47-51.
9. Atamaniuk, V.M. (2006). Hidrodynamika filtratsiinoho sushinnia dyspersnoho materialu. Promyslova hidravlika i pnevmatyka: vseukr. nauk.-tekhn. zhurnal, 1(11), 12-17.
10. Atamaniuk, V. M., & Humnytskyi, Ya. M. (2009). Hidrodynamika statsionarnoho sharu tekhnichnoho vuhletsiu. Vostochno-Evropeiskyi zhurnal peredovыkh tekhnolohyi, 5/5(41), 29-34.
11. Mala hirnycha entsyklopediia: u 3 t. za red. V. S. Biletskoho. (2013). T. 3, Dnipro: Skhidnyi vydavnychyi dim.
12. Atamaniuk, V., Humnytskyi, Ya. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Lviv: Vyd-vo Lviv. politekhniky, 255.
13. Atamaniuk, V. M., Kindzera, D. P., & Hosovskyi, R. R. (2012). Rozrakhunok koefitsiienta hidravlichnoho oporu pid chas rukhu teplovoho ahenta kriz statsionarnyi shar podribnenykh stebel soniashnyka. Naukovyi visnyk NLTU Ukrainy, 22(9), 112-118.