The technology for producing highly active hydrated lime using vibromechanical treatment of lime suspensions has been developed. The processes occurring during the high-frequency mechanical impact on calcium hydroxide microcrystals are investigated. The optimal parameters of vibration treatment of lime slurries were determined. The distribution of lime particles by particle size distribution was determined by laser granulometry, and the change in the morphology of Ca(OH)2 microcrystals after mechanical impact was studied. The processes of carbonization of untreated lime and lime with different duration of vibration treatment were studied.
1. Macchia, A., Bettucci, O., Gravagna, E., Ferro, D., Albini, R., Mazzei, B. Campanella, L. (2014). Calcium hydroxide nanoparticles and hypogeum environment: Test to understand the best way of application. J. Nanomater. 2014. https://doi.org/10.1155/2014/167540
2. Cardinale, N., Rospi, G. Stazi, A. (2010). Energy and microclimatic performance of restored hypogeous buildings in south Italy: the “Sassi” district of Matera. Building and Environment, 45(1), 94–106.
3. Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., Dey, A. (2015). Synthesis of nano calcium hydroxide in aqueous medium. J. Am. Ceram. Soc., 99, 787–795. http://dx.doi.org/10.1111/jace.14023.
4. Qin, C., Yin, J., An, H., Liu, W., Feng, B. (2012). Performance of extruded particles from calcium hydroxide and cement for CO2 capture. Energy Fuels, 26, 154–161. doi:10.1021/ef201141z.
5. Yakymechko, Y., Jaskulski, R., Lutsyuk, I. (2019). New ways of utilizing lime in modern building technology. Mater. Struct. Technol., 2, 61–69. http://dx.doi.org/10.31448/mstj.02.01.2019.61-69.
6. Sakellariou, K. G., Criado, Y. A., Tsongidis, N. I., Karagiannakis, G., Konstandopoulos, A. G. (2017). Multi-cyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Sol. Energy, 146, 65–78. http://dx.doi.org/10.1016/j.solener.2017.02.013.
7. Wang, K., Yan, T., Li, R. K., Pan, W. G. (2022). A review for Ca(OH)2/CaO thermochemical energy storage systems. Journal of Energy Storage, 50. https://doi.org/10.1016/j.est.2022.104612.
8. García-Vera, V. E., Tenza-Abril, A. J., Solak, A. M., Lanzón, M. (2020). Calcium hydroxide nanoparticles coatings applied on cultural heritage materials: Their influence on physical characteristics of earthen plasters. Applied Surface Science, 504. http://dx.doi.org/10.1016/j.apsusc.2019.144195.
9. Rodriguez-Navarro, C., Suzuki, A., Ruiz-Agudo, E. (2013). Alcohol Dispersions of Calcium Hydroxide Nanoparticles for Stone Conservation. Langmuir, 29. http://dx.doi.org/10.1021/la4017728.
10. Cazalla, O., Rodriguez-Navarro, C., Sebastian, E., Cultrone, G., Torre, M. J. (2004). Aging of lime putty: Effects on traditional lime mortar carbonation. J. Am. Ceram. Soc., 83, 1070–1076. http://dx.doi.org/10.1111/j.1151-2916.2000.tb01332.x.
11. Lanzón, M., Madrid, J. A., Martínez-Arredondo, A., Mónaco, S. (2017). Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl. Surf. Sci., 424, 20–27. https://doi.org/10.1016/j.apsusc.2017.02.248
12. Chanda, D. K., Khan, P., Dey, N., Majumder, M., Chakraborty, A. K., Jha, B. B., Ghosh, J. (2020). Synthesis of calcium based nano powders for application in conservation and restoration of heritage mortar. SN Applied Sciences, 2, 1–11. https://link.springer.com/article/10.1007/s42452-020-2138-0.
13. Pozo-Antonio, J. S., Fiorucci, M. P., Ramil, A., López, A. J., Rivas, T. (2015). Evaluation of theeffectiveness of laser crust removal on granites by means of hyperspectral imaging techniques, Appl. Surf. Sci. 347, 832–838. https://doi.org/10.1016/j.apsusc.2015.04.182.
14. Lopez-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., Álvarez de Buergo, M., Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Mater. Charact., 61, 168–184. https://doi.org/10.1016/j.matchar.2009.11.007.