Based on the temperature dependence of the solubility of 2-methyl-5-phenyl-1-(-4-methylphenyl)- pyrrole-3-carboxylic acid in 1-butanol, 2-butanol, 1-propanol, and 2-propanol, the enthalpy and entropy of their dissolution were calculated. Taking into account the enthalpy and entropy of melting recalculated to 298.15 K, the enthalpies and entropies of mixing were calculated.
1. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. Journal of Physical Chemistry B, 114(8), 2846–2851. https://doi.org/10.1021/jp911323c
2. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. Journal of Physical Chemistry A, 117(24), 5195–5204. https://doi.org/10.1021/jp4032628
3. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di-, tri-, tetra-, and pentamethyl-substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1–7. https://doi.org/10.1016/j.jct.2014.04.003
4. Santos, A. F. L. O. M., & Ribeiro da Silva, M. A. V. (2010). Calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441–1450. https://doi.org/10.1016/j.jct.2010.06.012
5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854
6. Du, C. (2022). The solubility of ethyl candesartan in mono solvents and investigation of intermolecular interactions. Liquids, 2(4), 404–412. https://doi.org/10.3390/liquids2040023
7. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., & Li, Q. (2022). Solubility measurement, modeling, and solvent effect of m-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798
8. Maharana, A., & Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004
9. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., & Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven mono-solvents. Journal of Molecular Liquids, 333, 115894. https://doi.org/10.1016/j.molliq.2021.115894
10. Wu, Y., Zhang, X., Di, Y., & Zhang, Y. (2017). Solubility determination and modelling of 4-nitro-1,2-phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014
11. Li, X., Wang, M., Du, C., Cong, Y., & Zhao, H. (2017). Thermodynamic functions for solubility of 3-nitro-o-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98. https://doi.org/10.1016/j.jct.2017.02.017
12. Собечко, І. Б. (2021). Термодинамічні властивості оксигено- та нітрогеновмісних гетероциклічних сполук та їх розчинів (Дисертація доктора хімічних наук, Львів). 525 с.
13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., & Goshko, L. (2019). Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in organic solutions. French-Ukrainian Journal of Chemistry, 7(2), 1–8. https://doi.org/10.17721/fujcv7i2p1-8