Еxperimental determination of thermodynamic parameters of 3-(5-phenyl-1-(furan-2-ylmethyl)-1h-pyrrol-2-yl)propanoic acid

1
National University Lviv Polytechnic
2
Ivan Franko National University of Lviv
3
Frantsevich Institute for Problems of Materials Science NASU
4
Ivan Franko National University of Lviv
5
Lviv Polytechnic National University

The fundamental thermochemical quantities of 3-(5-phenyl-1-(furan-2-ylmethyl)-1H-pyrrol-2-yl)propanoic acid have been experimentally determined for the first time. Using the combustion calorimetry method and the differential thermal analysis method, the combustion energy, melting point, and heat of phase transitions were determined. Standard enthalpies of combustion, formation in the condensed state, fusion and vaporisation were calculated on the basis of experimental data. Applying the two methods, the enthalpies of sublimation were recalculated to 298.15 K and the enthalpies of formation in the gaseous state were evaluated. The possibilities of applying the analytical calculation of the enthalpy of formation using the Joback, Domalski and semi-empirical methods of quantum chemical calculation are shown.

1. Giordano, D., Biancaniello, C., Argenio, M. A., & Facchiano, A. (2022). Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals, 15(5), 646. https://doi.org/10.3390/ph15050646.

2. Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. (2020). A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules, 25(8), 1909. https://doi.org/10.3390/molecules25081909

3. Masci, D., Hind, C., Islam, M. K., Toscani, A., Clifford, M., Coluccia, A., Conforti, I., Touitou, M., Memdouh, S., Wei, X., La Regina, G., Silvestri, R., Sutton, J. M., & Castagnolo, D. (2019). Switching on the Activity of 1,5-Diaryl-Pyrrole Derivatives against Drug-Resistant ESKAPE Bacteria: Structure-Activity Relationships and Mode of Action Studies. European Journal of Medicinal Chemistry, 178(1), 500–514. https://doi.org/10.1016/j.ejmech.2019.05.087

4. Li Petri, G., Spanò, V., Spatola, R., Holl, R., Raimondi, M. V., Barraja, P., & Montalbano, A. (2020). Bioactive Pyrrole-Based Compounds with Target Selectivity. European Journal of Medicinal Chemistry, 208, 112783. https://doi.org/10.1016/j.ejmech.2020.112783

5. Paprocka R., Pazderski L., Mazur L., Wiese-Szadkowska M., Kutkowska J., Nowak M., & Helmin-Basa, A. (2022). Synthesis and structural study of amidrazone derived pyrrole-2,5-dione derivatives: Potential anti-inflammatory agents. Molecules, 27(9), 2891. https://doi.org/10.3390/molecules27092891

6. Bharathi Hassan Ganesh, Raj, A. G., Baladhandapani Aruchamy, Pandurangan Nanjan, Drago, C., & Ramani, P. (2023). Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure‐Activity Relationship. ChemMedChem, 19(1). https://doi.org/10.1002/cmdc.202300447

7. Bahija Rebbah, Abderrahim El Haib, Lahmady, S., Issam Forsal, Maryse Gouygou, Mallet-ladeira, S., Abdelouahid Medaghri-alaoui, El Mostapha Rakib, & Abdellah Hannioui. (2024). Synthesis, Characterization, and Inhibition Effects of a Novel Eugenol Derivative Bearing Pyrrole Functionalities on the Corrosion of Mild Steel in a HCl Acid Solution. RSC Advances, 14(20), 14152–14160. https://doi.org/10.1039/d4ra01337a

8. Chandima Bulumulla, Ruwan Gunawardhana, Gamage, P. L., Miller, J. T., Kularatne, R. N., Biewer, M. C., & Stefan, M. C. (2020). Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 12(29), 32209–32232. https://doi.org/10.1021/acsami.0c07161

9. Amin, A., Qadir, T., Sharma, P. K., Jeelani, I., & Abe, H. (2022). A Review on the Medicinal and Industrial Applications of N-Containing Heterocycles. The Open Medicinal Chemistry Journal, 16(1). https://doi.org/10.2174/18741045-v16-e2209010.

10. Ji Ram, V., Sethi, A., Nath, M., & Pratap, R. (2019). Five-Membered Heterocycles. The Chemistry of Heterocycles, 149–478. https://doi.org/10.1016/b978-0-08-101033-4.00005-x

11. Walker, A. B., & Clardy, J. A. (2021). Machine Learning Bioinformatics Method to Predict Biological Activity from Biosynthetic Gene Clusters. Journal of Chemical Information and Modeling. 2021. Vol. 61. P. 2560– 2571. https://doi.org/10.1021/acs.jcim.0c01304

12. Sitar, A., Shevchenko, D., Matiichuk, V.V., Skrypska, O., Lesyuk, O., Khomyak, S., Lytvyn, R., Sobechko, I., & Horak, Yu. (2024). Synthesis of 3-(1R-5-phenyl-1-N-pyrrol-2-yl)propanoic acids and prediction of their biological activity. Visnyk of the Lviv University. Series Chemistry, 65(1), 223–230. https://doi.org/10.30970/vch.6501.223 (in Ukrainian)

13. Zhuang, X., Song, Y., Zhan, H., Yin, X., & Wu, C. (2019). Synergistic Effects on the Co-Combustion of Medicinal Biowastes with Coals of Different Ranks. Renewable Energy, 140, 380–389. https://doi.org/10.1016/j.renene.2019.03.070

14. Shevchenko, D. S., Horak, Y. I., Tischenko, N. I., Pyshna, D. B., & Sobechko, I. B. (2024). Thermodynamic Properties of 3-(1,5-Diphenylpyrrol-2-Yl)- Propanoic acid. Chemistry, technology of substances and their applications, 7(1), 8–14. https://doi.org/10.23939/ctas2024.01.008

15. Rossini F. D. Experimental Thermochemistry. (1956). Interscience Publishers. N. Y.; London, Vol. 2. P. 326.

16. Joback, K. G., & Reid, R. C. (1987). Estimation of pure-component properties from group-contributions. Chemical Engineering Communications, 57(1-6), 233–243. https://doi.org/10.1080/00986448708960487

17. Domalski, E. S., & Hearing, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22(4), 805–1159. https://doi.org/10.1063/1.555927

18. K., Bogonovych, H., Starykov, Dutka, V., Ya., Kovalskyi, Horbenko, Y., & O., Aksimentyeva. (2024) Quantum-Chemical and Spectral Research of the Formation Mechanism and Structure of Polyindole. Visnyk of the Lviv University Series Chemistry, 65(1), 264–264. https://doi.org/10.30970/vch.6501.264

19. MOPAC2016, J.J.P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA

20. Senda N. Program Package Winmostar Version 11.9.4 (https://winmostar.com/).

21. Sobechko, B., Dibrivnyi, V. M., & Gorak, Yu. I. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5(2), 30–36. https://doi.org/10.23939/ctas2022.02.030

22. Electronic resource http://www.codata.info/resources/databases/key1.html (Accessed on Jan 27, 2025)

23. Acree, W., & Chickos, J. S. (2016). Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1−C10. Journal of Physical and Chemical Reference Data, 45, 033101. https://doi.org/10.1063/1.4948363

24. Sobechko, I. (2016). Calculation Method of Heat Capacity Change during Organic Compounds Vaporization and Sublimation. Chemistry & Chemical Technology, 10(1), 27–33. https://doi.org/10.23939/chcht10.01.027

25. Sobechko, I., Horak, Y., Dibrivnyi, V., Obushak, M., & Goshko, L. (2019). Thermodynamic Properties of 2-Methyl-5-Arylfuran-3 Carboxylic Acids Chlorine Derivatives in Organic Solvents. Chemistry & Chemical Technology, 13(3), 280–287. https://doi.org/10.23939/chcht13.03.280