The crystalline phases of the CaO-SiO2 system and polymorphic modifications of calcium metasilicate (wollastonite) are analysed. The physical, crystallographic characteristics and structural parameters of the wollastonite crystal lattice are presented. The features of the use of natural and synthetic wollastonite in various industries are considered. The role of wollastonite as a reinforcing material, which depends on the morphology of its crystals, is highlighted. The prospects of developing innovative technologies for the synthesis of wollastonite, in particular, by hydrothermal synthesis and high-temperature sintering, are substantiated.
1. Turkmen, O., Kucuk, А., Akpinar, S. (2015). Effect of wollastonite addition on sintering of hard porcelain. Сeramics International, 41(4), 5505–5512. doi.org/10.1016/j.ceramint.2014.12.126
2. Xue, H., Wang, G., Hu, M., Chen, B. (2015). Modification of wollastonite by acid treatment and alkali-induced redeposition for use as papermaking filler. Powder Technology, 276, 193–199. doi.org/10.1016/j.powtec.2015.02.030
3. Azarov, G. M., Maiorova, E. V., Oborina, M. A., & Belyakov, A. V. (1995). Wollastonite raw materials and their applications (a review). Glas. Ceram., 52, 237–240. doi.org/10.1007/BF00681090
4. Wang, H., Chen, J., & Xu, S. (2012). Effects of Al2O3 addition on the sintering behavior and microwave dielectric properties of CaSiO3 ceramics. J. Eur. Ceram. Soc., 32(3), 541–545, doi.org/10.1016/j.jeurceramsoc.2011.09.014
5. Tiggemann, H. M., Tomacheski, D., Celso, F. (2013). Use of wollastonite in a thermoplastic elastomer composition. Polymer Testing, 32(8), 1373–1378. doi.org/10.1016/j.polymertesting.2013.08.017
6. Ding, Q., Zhang, Z., Wang, C., & Kancheng M. (2012). Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochimica Acta, 536, 47–54. doi.org/10.1016/j.tca.2012.02.023
7. Meng, M., Feng, Y., Guan, W. (2014). Selective separation of salicylic acid from aqueous solutions using molecularly imprinted nano-polymer on wollastonite synthesized by oil-in-water microemulsion method. Journal of Industrial and Engineering Chemistry, 20(6), 3975–3983. doi.org/10.1016/j.jiec.2013.12.099
8. Chan, Jia X., Wong, Joon F., Hassan, A., Mohamad, Z, Othman, N. (2020). Mechanical properties of wollastonite reinforced thermoplastic composites: A review. Polymer Composites, 41(2), 395–429. doi.org/10.1002/pc.25403
9. Humenetskyi, T. V., Zin, I. M., Bilyi, L. M., & Sokolovskyi, O. R. (2009). Pidvyshchennia zakhysnykh vlastyvostei poliuretanovohopokryttia funktsionalnym napovnenniam. Chemistry, technology and application of substances. 644, 293–297.
10. Abd Rashid, R., Shamsudin, R., Hamid, M., & Jalar, А. (2014). Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. Journal of Asian Ceramic Societies, 2(1), 77–81. doi.org/10.1016/j.jascer.2014.01.010
11. Salman, S. M., Salama, S. N., Abo-Mosallam, H. A. (2015). The crystallization behaviour and bioactivity of wollastonite glass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system. Journal of Asian Ceramic Societies, 3(3), 255–261. doi.org/10.1016/j.jascer.2015.04.004
12. Jin, H., Kim, Y-G , Jin, Z., & Al-Shati, A. S. (2022). Optimization and analysis of bioenergy production using machine learning modeling: Multi-layer perceptron, Gaussian processes regression, K-nearest neighbors, and Artificial neural network models. Energy Reports, 8, 13979–13996. doi.org/10.1016/j.egyr.2022.10.334
13. https://coatings.sibelcotools.com/industrial-coatings/powder-coatings/wollastonite/
14. https://www.researchgate.net/figure/Morphology-of-fly-ash-used-as-precursor_fig1_282459574
15. Pona, M. H., Borovets, Z. I., Kobryn, O. V., & Vorona, U. Ye. (2013). Elektronno-mikroskopichni doslidzhennia fazoutoren pry vypali shtuchnoho tobermorytu. Chemistry, technology and application of substances, 761, 317–322.
16. Borovets, Z. I., Pona, M. H., Solokha, I. V., & Shulypa, O. V. (2016). Vplyv volastonitu nyzkotemperaturnoho syntezu na strukturu matovykh polyv. Chemistry, technology and application of substances, 841, 54–59.
17. Borovets, Z. I., Pona, M. H., Shulypa, O. V., & Solokha, I. V. (2018). Vykorystannia syntetychnoho tobermorytu v tekhnolohii vyrobnytstva keramichnykh plytok. Chemistry, technology and application of substances 1(1), 21–26.
18. Hosseiny, A. H. M., Najafi, А., Khala, G. (2023). Investigation of CaO/MgO on the formation of Anorthite, Diopside, Wollastonite and Gehlenite phases in the fabrication of fast firing ceramic tiles. Construction and Building Materials, 394, 132022. doi.org/10.1016/j.conbuildmat.2023.132022
19. Daineko, K. (2015). Nyzkotemperaturnyi elektrotekhnichnyi farfor. (Dys. kand. tekhn. nauk). National Technical University ‘Kharkiv Polytechnic Institute’, Kharkiv.
20. Wang, Sh., Qi, X., Hu, J. & Tian, X. (2015). Characterization of anorthite-based porcelain prepared by using wollastonite as a calcium source. Journal of Ceramic Processing Research, 16(3), 361–365.
21. Turkmen, O., Kucuk, A., Akpinar, S. (2015). Effect of wollastonite addition on sintering of hard porcelain. Ceramics International, 41(4), 5505-5512. doi.org/10.1016/j.ceramint.2014.12.126
22. Kulkarni, S., Nagabhushana, B. M., Parvatikar, N., & Damle, R. (2011). Effect of γ-Irradiation on the Dielectric and Conductivity Properties of Nano-Wollastonite. Research Article, 2011. doi:10.5402/2011/808560
23. Khater, G.A., Nabawy, Bassem S., El-Kheshen, A. A., & Elsatar, А. (2021). Preparation and characterization of low-cost wollastonite and gehlenite ceramics based on industrial wastes. Construction and Building Materials, 310(6), 125214. doi.org/10.1016/j.conbuildmat.2021.125214
24. Mert Somtürk, Sabit, Emek, İ.Y., Senler, S., & Orbay, М. (2016). Effect of wollastonite extender on the properties of exterior acrylic paints. Progress in Organic Coatings, 93, 34–40. doi.org/10.1016/j.porgcoat.2015.12.014
25. Palakurthy, S., Venu Gopal Reddy, K., Samudrala, R. К., &Azeem, P. А. (2019). In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering: C, 98, 109–117. doi.org/10.1016/j.msec.2018.12.101
26. Magallanes-Perdomo, М., De Aza, A. H., Mateus, A. Y., & Pena, Р. (2010). In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics. Acta Biomater., 6(6), 2254–2263. doi.org/10.1016/j.actbio.2009.12.027
27. Zhang, N. L., Molenda, J. A., Fournelle, J. H. & Sahai, N. (2010). Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells. Biomaterials, 31(30), 7653–7665. doi.org/10.1016/j.biomaterials.2010.06.043
28. Gandolfi, M. G., Shah, S. N., Feng, R., & Akintoye, S. O. (2011). Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. J. Endod., 37(8), 1102–1108. doi:10.1016/j.joen.2011.05.009
29. Azeena, S., Subhapradha, N., Selvamurugan, N., & Moorthi, А. (2017). Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Mater. Sci. Eng. C, 71, 1156–1165. doi.org/10.1016/j.msec.2016.11.118
30. Kalla, P., Rana, А., Chad, Y. B., & Csetenyi, L. (2015). Durability studies on concrete containing wollastonite. Journal of Cleaner Production, 87(1), 726–734. doi.org/10.1016/j.jclepro.2014.10.038
31. Abd Rashid, R., Shamsudin, R., Hamid, М. А. А., & Jalar, А. (2014). In-vitro bioactivity of wollastonite materials derived from limestone and silica sand. Ceramics International, 40(5), 6847–6853. doi.org/10.1016/j.ceramint.2013.12.004
32. Ghoorah, M., Dlugogorski, B. Z., Balucan, R. D., & Kennedy, Е. М. (2014). Selection of acid for weak acid processing of wollastonite for mineralisation of CO2. Fuel, 122, 277–286. doi.org/10.1016/j.fuel.2014.01.015
33. Lin, K., Chang, J., Chen, G., & Ning, С. (2007). A simple method to synthesize single-crystalline β-wollastonite nanowires. Journal of Crystal Growth, 300(2), 267–271. doi.org/10.1016/j.jcrysgro.2006.11.215
34. Zhang, Сh., Cai, J., Xu, H., & Guo, X. (2020). Mechanical properties and mechanism of wollastonite fibers reinforced oil well cement. Construction and Building Materials, 260(10), 120461. doi.org/10.1016/j.conbuildmat.2020.120461
35. Zhu, L. Z., Sohn, H. Y., Bronson, T. M. (2014). Flux growth of 2M-wollastonite crystals for the preparation of high aspect ratio particles. Ceramics International, 40(4), 5973–5982. doi.org/10.1016/j.ceramint.2013.11.045
36. Soliman, A. M., Nehdi, M. L. (2014). Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete. Cement and Concrete Composites, 46, 81–89. doi.org/10.1016/j.cemconcomp.2013.11.008
37. Min, B., Chen, G., Sun, Y., & Wang, Z. (2024). Enhancing the fracture properties of carbon fiber-calcium silicate hydrate interface through graphene oxide. Materials & Design, 241, 112916. doi.org/10.1016/j.matdes.2024.112916
38. Mohammadi, M., Alizaden, P., Atlasbaf, Z. (2011). Effect of frit size on sintering, crystallization and electrical properties of wollastonite glass-ceramics. J. Non–Cryst. Solids, 357(1), 150 – 156. doi.org/10.1016/j.jnoncrysol.2010.09.062
39. Fiocco, L., Elsayed, H., Daguano, J.K.M.F., & Bernardo, Е. (2015). Silicone resins mixed with active oxide fillers and Ca–Mg Silicate glass as alternative/integrative precursors for wollastonite–diopside glass-ceramic foams. Journal of Non-Crystalline Solids, 416, 44–49. doi.org/10.1016/j.jnoncrysol.2015.03.001
40. Teixeira, S. R., Souza, A. E., Carvalhо, С. L. & Rincón, J. (2014). Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials. Materials Characterization, 98, 209–214. doi.org/10.1016/j.matchar.2014.11.003
41. Magallanes-Perdomo, M., Pena, P., De Aza, P. N., & De Aza, P. Н. (2009). Devitrification studies of wollastonite–tricalcium phosphate eutectic glass. Acta Biomaterialia, 5(8), 3057–3066. doi.org/10.1016/j.actbio.2009.04.026
42. Krakhmal, Yu. (2015). Sylikatkaltsiievi lehkovahovi vyroby, shcho otrymani priamym tverdofazovym syntezom z syrovynnykh materialiv Ukrainy (Dys. kand. tekhn. nauk). VAT «UkrNDIV im. A. S. Berezhnoho», Kharkiv.
43. Prymachenko, V., Kaznacheieva, N., Krakhmal, Yu. (2011). Patent Ukrainy 93092. Kyiv : Derzhavna sluzhba intelektualnoi vlasnosti Ukrainy.
44. Pona, M. H., Borovets, Z. I., Kobryn, O. V., & Kochubei, V. V. (2012). Vykorystannia hidrotermalnoi obrobky v tekhnolohii otrymannia volastonitu. Chemistry, technology and application of substances, 726, 303–308.
45. Borovets, Z. I., Pona, M. H., Chekailo, M. V., & Kobryn, O. V. (2014). Formuvannia struktury nyzkoosnovnykh hidrosylikativ systemy SaO–SiO2–H2O z khimichnymy dodatkamy pry avtoklavuvanni. Chemistry, technology and application of substances, 787, 59–65.
46. Pona, M. H., Borovets, Z. I., Solokha, I. V., & Kobryn, O. V. (2013). Patent Ukrainy na vynakhid 101580. Kyiv : Derzhavna sluzhba intelektualnoi vlasnosti Ukrainy.
47. Borovets, Z., Pona, M., Kobryn, О. (2013). Artificial Tobermoryte as Raw Material for Low Temperature Burning. Chemistry & Chemical Technology 2013 (ССТ–2013), Lviv, Ukraine.