Мodification of epoxy polymers with metalorganic complexes

2025;
: 99-103
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv State University of Life Safety

A new type of epoxyamine composition containing a copper (II) metalorganic complex has been created. The mechanism for obtaining the complex is developed. The structure and properties of the modified materials have been explored and analyzed, as well the relationship between them has been determined. A copper (II) chelate complex has been obtained and applied as a hardener for epoxyamine compositions.  It has also been found that the complex mentioned reduces the flammability of materials during the structuring. 

1. Dasari, A., Yu, Z.-Z., Cai, G.-P., & Mai, Y.-W. (2013). Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 38(9), 1357–1387. https://doi.org/10.1016/j.progpolymsci.2013.06.006

2. Lavrenyuk, O. (2013). Component composition and toxicity of products of thermo-oxidative destruction of epoxy polymers. Bulletin of Lviv State University of Life Safety, (7), 189–193. https://www.neliti.com/publications/314184/

3. Makarenko, V. (2023). Pidvyshchennia vohnehasnykh vlastyvostei sypkykh materialiv shliakhom vvedennia krystalohidrativ. Problems of Emergency Situations, 147–158.  https://doi.org/10.52363/2524-0226-2022-36-12

4. Lavrenyuk, H., Mykhalichko, B., Garanyuk, P., & Mykhalichko, O. (2020). New copper(II)-coordinated epoxy-amine polymers with flame-self-extinguishment properties: Elaboration, combustibility testing, and flame propagation rate measuring. Fire and Materials, 44(6), 825–834. doi: 10.1002/fam.2879

5. Lahuta, O. V., Varhaliuk, V. F., Polonskyi, V. A., & Kushnerov, O. I. (2024). Osoblyvosti budovy midvmisnykh kompozytiv na osnovi maleinatnykh kompleksiv Cu+. Journal of Chemistry and Technologies, 31(4), 727–733. https://doi.org/10.15421/jchemtech.v31i4.290194

6. Lavrenyuk, O., Mykhalichko, B., Chopyk, N., & Zemke, V. (2024). Ratsionalni tekhnolohii otrymannia metalkoordynovanykh epoksyaminnykh kompozytsii zi znyzhenoiu horiuchistiu. Bulletin of Lviv State University of Life Safety, 29, 72–78. https://doi.org/10.32447/20784643.29.2024.08

7. Metrolohiia. Furie-spektrometry. Metodyka povirky (DSTU 9142:2021). (b. d.). Tekhnichnyi komitet «Metrolohiia ta vymiriuvannia» (TK 63). – 10s. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=96470

8. Boultif, A., & Louër, D. (1991). Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. Journal of Applied Crystallography, 24(6), 987–993.  https://doi.org/10.1107/s0021889891006441

9. Moore, D., & Reynolds, Jr. R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.

10. Butler, I., & Harrod, J. (1989). Inorganic Chemistry: Principles and Applications. Benjamin-Cummings Pub Co. https://www.betterworldbooks.com/product/detail/inorganic-chemistry-prin...

11. Brailo, M. V., Buketov, A. V., Kobelnyk, O. S., Yakushchenko, S. V., Sapronova, A. V., Sapronov, O. O., & Vasilenko, A. O. (2018). Optymizatsiia vmistu dobavok u epoksy-poliefirnomu zviazuvachi dlia pidvyshchennia koheziinoi mitsnosti kompozytiv. Scientific Bulletin of UNFU, 28(11), 71–77.  https://doi.org/10.15421/40281114

12. Makieieva, I. S., Smirnov, M. O., & Haidai, I. O. (2023). Fotokatalizator na osnovi kuprum oksydiv, otrymanykh elektrolizom. Technologies and Engineering, (4), 88–95. https://doi.org/10.30857/2786-5371.2023.4.8

13. Bratychak, M., Zemke, V., Chopyk, N., & Tsvyk, V.(2018). Strukturuvannia polimernykh plivok v prysutnosti modyfikovanoi epoksydnoi smoly metodom UF-oprominennia. U Postup v naftohazopererobnii ta naftokhimichnii promyslovosti (s. 402–403). Lvivska politekhnika. https://apgip.lviv.ua/wp-content/uploads/2018/05/apgip-9-abstracts.pdf

14. Chang, W., Rose, L. R. F., Islam, M. S., Wu, S., Peng, S., Huang, F., Kinloch, A. J., & Wang, C. H. (2021). Strengthening and toughening epoxy polymer at cryogenic temperature using cupric oxide nanorods.  Composites Science and Technology, 208, 108762.  https://doi.org/10.1016/j.compscitech.2021.108762

15. Ismail, H., Sapuan, S. M., & Ilyas, R. A. (2021). Mineral-Filled Polymer Composites. CRC Press.  https://doi.org/10.1201/9781003221012