This study assesses heavy metal polyelement distribution in the urbanized hydroecosystem of the Kamyanka River within Zhytomyr city, Ukraine. Concentrations of Fe, Cu, Cr, Mn, Zn, Ni, Pb, and Co were analyzed in water, bottom sediments, and the aquatic macrophyte Vallisneria spiralis L. using atomic emission spectrometry. The spatial entropy analysis, employing Shannon-Wiener diversity index (H′ = 0.75-1.55), evenness index (E = 0.47-0.98), and relative organization index (R = 0.17-0.64), revealed metal-specific distribution patterns across ecosystem compartments. Iron showed the most uniform distribution (E = 0.98), copper exhibited more concentrated patterns (E = 0.47), while manganese demonstrated the highest level of organization (R = 0.64). Bioaccumulation coefficients (ranging from 7,333 to 326,667) and sedimentation coefficients (ranging from 1,733 to 19,310) quantified the metal transfer processes between ecosystem components. This spatial differentiation analysis provides a novel framework for understanding heavy metal migration patterns in urbanized river systems and can inform monitoring approaches targeted at specific metals based on their unique distribution characteristics.
1. Cui, S., Zhang, F., Hu, P., Hough, R., Fu, Q., Zhang, Z., An, L., Li, Y.-F., Li, K., Liu, D., & Chen, P. (2019). Heavy Metals in Sediment from the Urban and Rural Rivers in Harbin City, Northeast China. International Journal of Environmental Research and Public Health, 16(23), 4313. doi: https://doi.org/10.3390/ijerph16224313
2. Gandziura, V. P., Afanasyev, S. O., & Biedunkova, O. O. (2023). The concept of hydroecosystems' health (a review). Hydrobiological Journal, 59(2), 3-17. doi: https://doi.org/10.1615/hydrobj.v59.i2.10
3. Islam, S., Ahmed, K., Raknuzzaman, M., Al Mamun, H., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282-291. doi: https://doi.org/10.1016/j.ecolind.2014.08.016
4. Kapelista, I., Kireitseva, H., Tsyhanenko-Dziubenko, I., Khomenko, S., & Vovk, V. (2024). Review of Innovative Approaches for Sustainable Use of Ukraine's Natural Resources. Grassroots Journal of Natural Resources, 7(3), 378-395. doi: https://doi.org/10.33002/nr2581.6853.0703ukr19
5. Kayembe, J., Sivalingam, P., Salgado, C., Maliani, J., Ngelinkoto, P., Otamonga, J., Mulaji, C., Mubedi, J. I., & Poté, J. (2018). Assessment of water quality and time accumulation of heavy metals in the sediments of tropical urban rivers: Case of Bumbu River and Kokolo Canal, Kinshasa City, Democratic Republic of the Congo. Journal of African Earth Sciences, 147, 99-110. doi: https://doi.org/10.1016/j.jafrearsci.2018.07.016
6. Li, Y., Chen, H., Song, L., Wu, J., Sun, W., & Teng, Y. (2020a). Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. Journal of Hazardous Materials, 401, 124472. doi: https://doi.org/10.1016/j.jhazmat.2020.124472
7. Li, Y., Chen, H., & Teng, Y. (2020b). Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Science of the Total Environment, 737, 140310. doi: https://doi.org/10.1016/j.scitotenv.2020.140310
8. Skorbiłowicz, E., Ofman, P., Skorbiłowicz, M., Sidoruk, M., & Tarasiuk, U. (2024). Geochemical Assessment of Heavy Metal Distribution in Bug River Sediments, Poland: The Impacts of Urbanization and Agricultural Practices. Water, 16(11), 1573. doi: https://doi.org/10.3390/w16111573
9. Sojka, M., & Jaskuła, J. (2022). Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. International Journal of Environmental Research and Public Health, 19(17), 10502. doi: https://doi.org/10.3390/ijerph191710502
10. Tsyhanenko-Dziubenko, I., Kireitseva, H., & Demchuk, L. (2023). Dynamics of heavy metal compounds allocation in urbohydrotops of Kyiv region in post-military conditions. In Proceedings of the 17th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (pp. 1-5). Kyiv, Ukraine. doi: https://doi.org/10.3997/2214-4609.2023520066
11. Tsyhanenko-Dziubenko, I., Kireitseva, H., & Fonseca Araújo, J. (2024a). Physiological and biochemical biomarkers of macrophyte resilience to military-related toxic stressors. Journal of Environmental Problems, 9(4), 227-234. doi: https://doi.org/10.23939/ep2024.04.227
11. Tsyhanenko-Dziubenko, I., Šerevičienė, V., & Ustymenko, V. (2024b). Dissecting biochemical mechanisms that mediate tolerance to military chemical stressors in diverse malacological systems. Journal of Environmental Problems, 9(1), 51-58. doi: https://doi.org/10.23939/ep2024.01.051
12. Xia, F., Qu, L., Wang, T., Luo, L., Chen, H., Dahlgren, R., Zhang, M., Mei, K., & Huang, H. (2018). Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere, 207, 218-228. doi: https://doi.org/10.1016/j.chemosphere.2018.05.090
13. Zeng, Y., Bi, C., Jia, J., Deng, L., & Chen, Z. (2020). Impact of intensive land use on heavy metal concentrations and ecological risks in an urbanized river network of Shanghai. Ecological Indicators, 116, 106501. doi: https://doi.org/10.1016/j.ecolind.2020.106501
14. Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., & Liu, X. (2017). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 184, 278-288. doi: https://doi.org/10.1016/j.chemosphere.2017.05.155