RESULTS OF COMPARATIVE BACTERIOLOGICAL ASSESSMENT OF DRINKING WATER FROM DIFFERENT POINTS OF DELIVERY IN THE CITY OF MYKOLAIV AND POSSIBILITIES OF ADDITIONAL WATER DISINFECTION UNDER FIELD CONDITIONS

EP.
2025;
: pp. 145-155
1
Admiral Makarov National University of Shipbuilding
2
Admiral Makarov National University of Shipbuilding
3
Admiral Makarov National University of Shipbuilding

The provision of quality drinking water is one of the most important conditions for public health, especially in urban areas. Like many other settlements, the city of Mykolaiv faces problems with the quality of water supplied to consumers. This study evaluated some bacteriological parameters of drinking water supplied from different sources in the city and conducted a comparative analysis of the effectiveness of using plant coagulants for disinfection. Water samples were collected from underground sources, artesian wells, the municipal water supply network, and the Bug Estuary. The study was carried out regarding total microbial counts, coliforms, Escherichia coli, and enterococci. The results showed the presence of bacterial contamination in some samples; in particular, E. coli was detected, indicating fecal contamination of the water. Some of the samples treated by reverse osmosis met sanitary standards. The results emphasize the need to strengthen control over drinking water quality and introduce effective post-treatment technologies. The proposed use of natural coagulants is a promising alternative to traditional chemical treatment methods and can help improve the environmental safety of the water supply.

1.  Abd-Elhalim, B. T. (2022). Moringa oleifera leaf as a natural water purifier and causes decontamination of fecal-coliform bacteria. Novel Research in Microbiology Journal, 6(6), 1783-1800. doi: http://dx.doi.org/10.21608/nrmj.2022.273230

2. Akoachere, J. F. T. K., Omam, L. A., & Massalla, T. N. (2013). Assessment of the relationship between bacteriological quality of dug-wells, hygiene behaviour and well characteristics in two cholera endemic localities in Douala, Cameroon. BMC Public Health, 13, 692. doi: https://doi.org/10.1186/1471-2458-13-692

3. Atreya, K., Kattel, K., Tiwari, K. R., Baral, S., Adhikari, R., & Kalwar, O. P. (2023). Nutritional, ecological and livelihood signicance of Moringa oleifera: A review. Archives of Agriculture and Environmental Science, 8(3), 452-461. doi: https://dx.doi.org/10.26832/24566632.2023.0803025

4. Baye, S., Eshetie, M., & Denekew, T. (2021). Drinking Water Quality Assessment in Wegeda, Ethiopia. Journal of Environmental Public Health, 2021,  6646269. doi: https://doi.org/10.1155/2021/6646269

5. Cemenov, A. O., Kožuško, H. M., & Sachno, T. V. (2016). Technology Audit and Production Reserves, 3(39), 67-71. doi: https://doi.org/10.15587/2312-8372.2016.71486

6. Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P. A. R., Melo, D. F. O., & Coelho, N. M. M. (2015). Bioremediation of polluted waters using microorganisms. Biodegradation and Bioremediation of Polluted Systems - New Advances and Technologies, 65–92. doi: https://doi.org/10.5772/60770

7. Conboy, M. J., & Goss, M. J. (2000). Natural protection of groundwater against bacteria of fecal origin. Journal of Contaminant Hydrology, 43(1–2), 1–24. doi: https://doi.org/10.1016/s0169-7722(99)00100-x

8. El Bouaidi, W., Libralato, G., Tazart, Z., Enaime, G., Douma, M., Ounas, A., et al. (2022). Nature-based coagulants for drinking water treatment: an ecotoxicological overview. Water Environment Research, 94, e10782. doi: https://doi.org/10.1002/wer.10782

9. Golfinopoulos, S. K., Nikolaou, A. D., & Alexakis, D. E. (2024). Innovative Approaches for Minimizing Disinfection Byproducts (DBPs) in Water Treatment: Challenges and Trends. Applied Sciences, 14(18), 8153. doi: https://doi.org/10.3390/app14188153

10. Hasan, H., Muhammad, M. H., & Ismail, N. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33, 101035. doi: https://doi.org/10.1016/j.jwpe.2019.101035

11. Hihiyenichni vymohy do vody pytnoyi, pryznachenoyi dlya spozhyvannya lyudynoyu, DSanPin 2.2.4-171-10 (2012). Retrieved from https://zakon.rada.gov.ua/laws/show/z0452-10№Text

12. Jin, X, Li, Z, Xie, L, Zhao, Y, & Wang, T. (2013). Synergistic effect of ultrasonic pre-treatment combined with UV irradiation for secondary effluent disinfection. Ultrason Sonochem, 20(6), 1384-1389. doi: https://doi.org/10.1016/j.ultsonch.2013.03.010

13. Jyoti, D., Sinha, R., & Faggio, C. (2022). Advances in biological methods for the sequestration of heavy metals from water bodies: A review. Environmental Toxicology and Pharmacology, 79, 103927. doi: https://doi.org/10.1016/j.etap.2022.103927

14. Kgabi, N., Mashauri, D., & Hamatui, N. (2014). Utilisation of Water Purification “Tablets” at Household Level in Namibia and Tanzania. Open Journal of Applied Sciences, 4, 560-566. doi: http://dx.doi.org/10.4236/ojapps.2014.414055

15. Lapworth, D., Boving, T., Brauns, B. et al. (2023). Groundwater quality: global challenges, emerging threats and novel approaches. Hydrogeology Journal, 31, 15–18. doi: https://doi.org/10.1007/s10040-022-02542-0

16. Malovanyу, M., Zhuk, V., Tymchuk, I., Vronska, N., Zavoyko, B., & Senkovych, O. (2021). Prospects of cleaning filtrates by aerobic-reagent method on the example of Lviv region. Journal Environmental Problems, 6(4), 264–269. doi: https://doi.org/10.23939/ep2021.04.264

17. Matviychuk, N. G., Matviychuk, B. V., & Mozharivska, I. A. (2021). Physicochemical and bacteriological indicators of drinking water quality from different sources. Aquatic bioresources and aquaculture,  1, 147-159. doi: https://doi.org/10.32851/wba.2021.1.12

18. Motlagh, A. M., Yang, Z., & Saba, H. (2020). Groundwater Quality. Water Environment Research, 92, 1649–1658. doi: https://doi.org/10.1002/wer.1412

19. Mukherjee, A., Duttagupta, S., Chattopadhyay, S. et al. (2019). Impact of sanitation and socio-economy on groundwater fecal pollution and human health towards achieving sustainable development goals across India from ground-observations and satellite-derived nightlight. Scientific Reports, 9, 15193. doi: https://doi.org/10.1038/s41598-019-50875-w

20. Musee, N., Ngwenya, P., Motaung, L. K., Moshuhla, K., & Nomngongo, P. (2023). Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. Environmental Chemistry and Ecotoxicology, 5, 62–78. doi: https://doi.org/10.1016/j.enceco.2023.01.003

21. Odiyo, J. O., & Makungo, R. (2018). Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination. International Journal of Environmental Research and Public Health, 15(2), 317. doi: https://doi.org/10.3390/ijerph15020317

22. Omarova, A., Tussupova, K., Berndtsson, R., Kalishev, M., & Sharapatova, K. (2018). Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries. International Journal of Environmental Research and Public Health, 15(3), 495. doi: https://doi.org/10.3390/ijerph15030495

23. Pro zatverdzhennya Metodychnykh vkazivok «Sanitarno-mikrobiolohichnyy kontrolʹ yakosti pytnoyi vody»: Nakaz MOZ Ukrainy 2005, № 60 (2005). Retrieved from https://zakon.rada.gov.ua/rada/show/v0060282-05№Text

24. Prüss-Ustün, A., Bartram, J., Clasen, T., Colford, J. M., Jr., Cumming, O., Curtis, V., Bonjour, V., Dangour, A. D., De France, J., Fewtrell, L., et al. (2014). Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries. Tropical Medicine and International Health, 19(8), 894–905. doi: https://doi.org/10.1111/tmi.12329

25. Pyatkovskyy, T., Pokryshko, O., & Danylkov, S. (2024). Exploring water disinfection through electrolytic ozonation for application in wartime conditions. Bulletin of Medical and Biological Research, 6(1), 43–51. doi: https://doi.org/10.61751/bmbr/1.2024.43

26. Sabadash, V., Liuta, O., & Gumnitsky, J. (2021). Investigation of the process of fluoride ions adsorption by natural sorbents. Journal Environmental Problems. 6(3), 181–187. doi: https://doi.org/10.23939/ep2021.03.181

27. Safranov, T., Grabko, N., Polischuk, A., & Trokhimenko A. (2016). Balanced mineral composition of drinking water as a factorof influence on health of the population of urban agglomerations Northwest Black Sea Region. Bulletin of Odessa State Environmental University, 20, 5–17. Retrieved from http://bulletin.odeku.edu.ua/wp-content/uploads/2016/08/1-SAFRANOV_GRABK...

28. Safranov, T. A., Gusyeva, K. D., Polischuk, А. А., Goltsov, V. I., Shanina, Т. P., & Boyaryntsev, Ye. L. (2011). Quality of the source of centralized water supply of the Odesa industrial-and-urban agglomeration. Bulletin of Odessa State Environmental University, 11, 17–26. Retrieved from http://bulletin.odeku.edu.ua/wp-content/uploads/2011/03/4.pdf 

29. Saturday, A., & Runyonyozi, J. (2019). Analysis of Bacteriological Quality of Domestic Water Sources in Kabale Municipality, Western Uganda. Journal of Water Resource and Protection, 11(5), 552-569. doi: https://doi.org/10.4236/jwarp.2019.115033

30. Shestopalov, O., Sakun, A., Lizantan, P., Kanunnikova, N., Gaiduchek, O., Tomashevsky, R., & Vorobyov, B. (2024). Analysis of water quality indicators: contemporary aspects and challenges. Ecological Sciences, 3(54), 76-82. doi: https://doi.org/10.32846/2306-9716/2024.eco.3-54.10

31. Some, S., Mondal, R., Mitra, D., Jain, D., Verma, D., & Das, S. (2021). Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus, 1, 100008. doi: https://doi.org/10.1016/j.nexus.2021.100008

32. Trokhymenko, G., & Chestnykh, Y. (2024). Analysis of the efficiency of the application of natural coagulants. Technology Audit and Production Reserves, 2(3,76)), 48–52. doi: https://doi.org/10.15587/2706-5448.2024.303190

33. Trokhymenko, G. G., Hostieva, D. V., & Lytvynenko, D. Ju. (2024). Results of research on the level of satisfaction of the residents of the city of Mykolaiv with the quality of water from different water supply sources as a preliminary assessment of changes in the water supply. Collection of Scientific Papers of Admiral Makarov National University of Shipbuilding, 1, 177-184. doi: https://doi.org/10.15589/znp2024.1(494).24  

34. United Nations. (2022). The Sustainable Development Goals Report. Geneva, Switzerland: United Nations. Retrieved from https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf

35. Varkey, A J. (2020). Purification of river water using moringa oleifera seed and copper for point-of-use household application. Scientific African, 8, e00364. doi: https://doi.org/10.1016/j.sciaf.2020.e00364

36. World Health Organization, & UNICEF. (2014). Progress on drinking water and sanitation: 2014 update. Retrieved from https://apps.who.int/iris/bitstream/10665/112727/1/9789241507240_eng.pdf?ua=1

37. Yamaguchi, N. U., Cusioli, L. F., Quesada, H. B., Ferreira, M. E. C., Fagundes-Klen, M. R., Vieira, A. M. S., Gomes, R. G., Vieira, M. F., & Bergamasco, R. (2021). A review of Moringa oleifera seeds in water treatment: Trends and future challenges. Process Safety and Environmental Protection, 147, 405-420. doi: https://doi.org/10.1016/j.psep.2020.09.044

38. Yefanova, S.L.N., Ouédraogo, J.C.W., Ouédraogo, B., & Bonzi-Coulibaly, Y. L. (2022). The Use of Plants for Drinking Water Disinfection: Traditional Knowledge, Scientific Validation, Current Challenges and Prospects for the Future. In: Kowenje, C., et al. From Traditional to Modern African Water Management. Springer, Cham. doi: https://doi.org/10.1007/978-3-031-09663-1_9

39. Zakaria S. N. S., Che Ku Yahya C. K. M. F., & Yahya N. Y. (2022). The potential of Moringa oleifera seeds for fungal disinfection in water. Materials Today: Proceedings, 57, 1369–1372. doi: https://doi.org/10.1016/J.MATPR.2022.02.585