One of the most energy-intensive stages in match production is the drying of match splints. Therefore, the optimization of the drying process and the selection of optimal parameters is a relevant task. Filtration drying is proposed for the removal of moisture from match splints, as one of the highly effective and economical drying methods. The study of heat and mass exchange is a necessary step for the design of a filtration drying unit and the selection of optimal parameters.The article presents the results of experimental studies of heat and mass transfer during the filtration drying of match splints. The effect of the heat agent velocity on heat and mass transfer has been investigated. The heat and mass transfer coefficients during the drying of the wet material have been determined. To generalize the obtained data, criterion dependencies have been derived for determining the heat and mass transfer coefficients in the Reynolds number range of 200 ≤ Re ≤ 500. The similarity of the dependencies for the heat and mass transfer coefficients has been established, demonstrating the identical influence of hydrodynamics on these processes. The error between the experimental and calculated values does not exceed 7.14%.
1. Boshkova, I., Volgusheva, N., Hrechanovskyi, A., Nikitin, D., & Tortika, D. (2024). Methodological Principles for Determining Heat and Moisture Transfer Coefficients in Disperse Materials. Refrigeration Engineering and Technology, 60(4), 275–282. doi: https://doi.org/10.15673/ret.v60i4.3051
2. Butcher, J. C. (2016). Numerical Methods for Ordinary Differential Equations, 3rd Ed. Hoboken, New Jersey: John Wiley & Sons.
3. Gandía Ventura, I., Velázquez Martí, B., López Cortes, I., & Guerrero-Luzuriaga, S. (2024). Kinetic Models of Wood Biomass Drying in Hot Airflow Systems. Applied Sciences, 14(15), 6716. doi: https://doi.org/10.3390/app14156716
4. Chasiotis, V., Tzempelikos, D., Mitrakos, D., & Filios, A. (2021). Numerical and Experimental Analysis of Heat and Moisture Transfer of Lavandula x allardii Leaves during Non-Isothermal Convective Drying. Journal of Food Engineering, 331, 110708. doi: https://doi.org/10.1016/j.jfoodeng.2021.110708
5. Chávez, C. A., Moraga, N. O., Salinas, C. H., Cabrales, R. C., & Ananías, R. A. (2021). Modeling Unsteady Heat and Mass Transfer with Prediction of Mechanical Stresses in Wood Drying. International Communications in Heat and Mass Transfer, 123, 105230. doi: https://doi.org/10.1016/j.icheatmasstransfer.2021.105230
6. Ivashchuk, О., Atamanyuk, V., Chyzhovych, R., & Boldyryev, S. (2024). Investigation of the beet pulp filtration drying kinetics. Journal Environmental Problems, 9(3), 179–186. doi: https://doi.org/10.23939/ep2024.03.179
7. Gómez-de La Cruz, F. J., Palomar-Torres, A., Pérez-Latorre, F. J., & Cruz-Peragón, F. (2023). Convective Drying of Mango Stone for Use as Biomass. Environmental Research, 227, 115742. doi: https://doi.org/10.1016/j.envres.2023.115742
8.Khan, M. I. H., Welsh, Z., Gu, Y., Karim, M. A., & Bhandari, B. (2020). Modelling of Simultaneous Heat and Mass Transfer Considering the Spatial Distribution of Air Velocity during Intermittent Microwave Convective Drying. International Journal of Heat and Mass Transfer, 153, 119668. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119668
9. Khan, M. I. H., Batuwatta-Gamage, C. P., Karim, M. A., & Gu, Y. (2022). Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling. Energies, 15, 9347. doi: https://doi.org/10.3390/en15249347
10. Koukouch, A., Bakhattar, I., Asbik, M., Idlimam, A., Zeghmati, B., & Aharoune, A. (2020). Analytical Solution of Coupled Heat and Mass Transfer Equations during Convective Drying of Biomass: Experimental Validation. Heat Mass Transfer. doi: https://doi.org/10.1007/s00231-020-02817-w
11. Kuzminchuk, T. A., & Atamanyuk, V. M. (2025). Heat Transfer Process during Filtration Drying of Match Splints. Journal Environmental Problems, 10(1), 72–78. doi: https://doi.org/10.23939/ep2025.01.072
12. Lerman, P., & Scheepers, G. (2023). Determination of a Mass-Transfer Coefficient for Wood Drying by Means of Thermography. Wood Material Science & Engineering, 18(6), 2104–2111. doi: https://doi.org/10.1080/17480272.2023.2243473
13. Mykychak, B., Biley, P., & Kindzera, D. (2013). External Heat-and-Mass Transfer during Drying of Packed Birch Peeled Veneer. Chemistry & Chemical Technology, 7(2), 191–195. doi: https://doi.org/10.23939/chcht07.02.191
14. Оdnorih, Z., Malovanyy, М., Tkachyk, Y., Romaniuk, L., & Krusir, G. (2024). Internal environmental audit of the enterprise as a component of environmental management. Journal Environmental Problems, 9(3), 150–156. doi: https://doi.org/10.23939/ep2024.03.150
15. Ovsiak, O. V., & Dendjuk, M. V. (2023). Mathematical Modeling of Moisture Transfer in Wood Drying for the Two-Dimensional Case. Naukovyj Visnyk NLTU Ukrajiny, 33(4), 59–64. doi: https://doi.org/10.36930/40330408
16. Tarmian, A., Rémond, R., Dashti, H., & Perré, P. (2012). Moisture Diffusion Coefficient of Reaction Woods: Compression Wood of Picea abies L. and Tension Wood of Fagus sylvatica L. Wood Science and Technology, 46, 405–417. doi: https://doi.org/10.1007/s00226-011-0413-3
17. Turkan, B., & Etemoglu, A. B. (2019). Numerical Investigation of Wood Drying. Wood Research, 64(1), 127–136.
18 .Rémond, R., & Almeida, G. (2011). Mass Diffusivity of Low-Density Fibreboard Determined under Steady- and Unsteady-State Conditions: Evidence of Dual-Scale Mechanisms in the Diffusion. Wood Material Science & Engineering, 6, 23–33. doi: https://doi.org/10.1080/17480272.2010.515035
19. Sahoo, M., Kumar, V., & Naik, S. N. (2024). Convective Drying of Bitter Yam Slices (Dioscorea bulbifera): Mass Transfer Dynamics, Color Kinetics, and Understanding the Microscopic Microstructure through MATLAB Image Processing. Food Physics, 1, 100016. doi: https://doi.org/10.1016/j.foodp.2024.100016
20. Simo-Tagne, M., Rémond, R., Rogaume, Y., Zoulalian, A., & Bonoma, B. (2016). Modeling of Coupled Heat and Mass Transfer during Drying of Tropical Woods. International Journal of Thermal Sciences, 109, 299–308. doi: https://doi.org/10.1016/j.ijthermalsci.2016.06.012
21. Sokolovskyy, Y., Boretska, I., Sinkevych, O., Kroshnyy, I., & Rubinskyy, Y. (2024). Modeling of the Heat and Mass Transfer Process in Drying Chambers of Hygroscopic Materials Using Cellular Automata. Herald of Khmelnytskyi National University. Technical Sciences, 341(5), 405–416. doi: https://doi.org/10.31891/2307-5732-2024-341-5-59
22. Zhao, A., Rui, X., & Rong, B. (2022). Non-Equilibrium Heat Exchange and Multi-Coupled Nature of Mass Transfer in Solvent Removal of Propellant Grains. International Journal of Heat and Mass Transfer, 197, 123314. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123314
23. Zhao, A., Rui, X., & Rong, B. (2022). Non-Equilibrium Heat Exchange and Multi-Coupled Nature of Mass Transfer in Solvent Removal of Propellant Grains. International Journal of Heat and Mass Transfer, 197, 123314. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123314
24. Zhu, A., & Shen, X. (2014). The Model and Mass Transfer Characteristics of Convection Drying of Peach Slices. International Journal of Heat and Mass Transfer, 72, 345–351. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.001
25. Zhu, A., Zhao, J., & Wu, Y. (2020). Modeling and Mass Transfer Performance of Dioscorea alata L. Slices Drying in Convection Air Dryer. Journal of Food Process Engineering, 43, e13427. doi: https://doi.org/10.1111/jfpe.13427
26. Xing, T., Luo, X., Li, M., Wang, Y., Deng, Z., Yao, M., Zhang, W., Zhang, Z., & Gao, M. (2023). Study on Drying Characteristics of Gentiana macrophylla under the Interaction of Temperature and Relative Humidity. Energy, 273, 127261. doi: https://doi.org/10.1016/j.energy.2023.127261
27. Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and Experimental Study on Drying Shrinkage-Deformation of Apple Slices during Process of Heat-Mass Transfer. International Journal of Thermal Sciences, 136, 539–548. doi: https://doi.org/10.1016/j.ijthermalsci.2018.10.042