FLORISTIC AND ECOLOGICAL ASSESSMENT OF THE SAMARA FOREST COMPLEX IN THE STEPPE ZONE OF UKRAINE

1
Оles Honchar Dnipro National University
2
Oles Honchar Dnipro National University
3
Oles Honchar Dnipro National University
4
Oles Honchar Dnipro National University
5
Dnipro Academy of Continuing Education of the Dnipro Regional Council
6
Dnipro State Technical University
7
Oles Honchar Dnipro National University
8
National University of Life and Environmental Sciences of Ukraine
9
Oles Honchar Dnipro National University
10
Oles Honchar Dnipro National University

The article explores the ecological significance of the Samara Forest – a unique forested natural complex in the steppe zone of Northern Prydniprovia, Ukraine. This study assesses the floristic diversity, conservation value, and ecological integrity of the area based on field surveys, historical data, and remote sensing. The flora of the Samara Forest comprises a wide range of native plant species, totaling 1.154 vascular plant species across approximately 451 km², among which a significant number are rare or regionally protected. The high species richness is associated with habitat heterogeneity and the presence of ecotones between forest and steppe elements; floristic density in the region reaches 2.8 species per km², which is substantially higher than the average for the broader Dnipropetrovsk oblast (1.714 species over 31.900 km²; 0.05 species per km²). The results emphasize the urgent need for conservation and provide a scientific basis for assigning protected status to this area. The territory retains considerable ecological potential, supports important ecosystem services, and can play a key role in regional biodiversity preservation strategies. Establishing the Samarskyi Lis National Nature Park would ensure long-term protection of threatened species and ecosystems, under increasing anthropogenic and climatic pressures.

1. Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia? Environmental Research Letters, 14(2), 024007. doi: https://doi.org/10.1088/1748-9326/aaf6db  

2. Belova, N. A., Travleev, A. P., Bogovin, A. V., & Chernyshenko, V. S. (2010). Evolution and genesis of soils under ravine forest phytocenoses in the steppe. Soil Science, 11(1–2), 16–27.

3. Demianov, V. V. (2010). Hydrological characteristics of the Samara River basin. Problems of Steppe Forestry and Soil Reclamation, 14, 67–79.

4. Didukh, Ya. P. (2009). Green Book of Ukraine. Kyiv: Alterpress. Retrieved from http://www.irbis-nbuv.gov.ua/E_LIB/PDF/ukr0002042.pdf 

5. Didukh, Ya., & Alyoshkina, U. (2012). Biotopes of Kyiv. Kyiv: Agrarna Media-Hrupa.

6. Dubyna, D. V., Vakarenko, L. P., Ustymenko, P. M., Davydov, D. A., Dziuba, T. P., Baranovski, B. A., Karmyzova, L. A., Kulik, A. F., & Zhykharieva, A. V. (2023). Rare steppe plant communities in Ukraine: Status, threats and their minimization. Biosystems Diversity, 31(2), 209–216. doi:  https://doi.org/10.15421/012322  

7. European Commission, DG Environment Nature. (2013). Interpretation manual of European Union habitats. EUR 28. Retrieved from https://eunis.eea.europa.eu/habitats-code-browser.jsp 

8. Faruque, M. J., Vekerdy, Z., Hasan, M. Y., Islam, K. Z., Young, B., Ahmed, M. T., Monir, M. U., Shovon, S. M., Kakon, J. F., & Kundu, P. (2022). Monitoring of land use and land cover changes by using remote sensing and GIS techniques at human-induced mangrove forest areas in Bangladesh. Remote Sensing Applications: Society and Environment, 25, 100699. doi: https://doi.org/10.1016/j.rsase.2022.100699

9. Francini, S., & Chirici, G. (2022). A Sentinel-2 derived dataset of forest disturbances occurred in Italy between 2017 and 2020. Data in Brief, 42, 108297. doi: https://doi.org/10.1016/j.dib.2022.108297

10. Holoborodko, K. K., Plyusch, I. G., & Pakhomov, O. E. (2010). Biodiversity of Ukraine. Dnipropetrovsk region. Higher species of Lepidoptera. Part 1. Lepidoptera: Lasiocampoidea, Bombicoidea, Noctuoidea. Dnipropetrovsk: Dnipropetrovsk University Press. Retrieved from https://www.zoology.dp.ua/wp-content/downloads/pahomov/PA_10_05.pdf 

11. Horban, V. A. (2016). Physical properties of soils and litter in forest biogeocoenoses of the steppe zone of Ukraine. In Biogeocoenological studies of forests in the steppe zone of Ukraine (pp. 142–154). Dnipro: Svidler A. L.

12. Jiang, F., Zhao, F., Ma, K., Li, D., & Sun, H. (2021). Mapping the forest canopy height in Northern China by synergizing ICESat-2 with Sentinel-2 using a stacking algorithm. Remote Sensing, 13(8), 1535. doi: https://doi.org/10.3390/rs13081535

13. Kuzemko, A., Didukh, Ya., Onyshchenko, V., & Šeffer, J. (2018). National habitat catalogue of Ukraine. Kyiv: Klymenko.

14. Li, C., Zhou, L., & Xu, W. (2021). Estimating above ground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sensing, 13(8), 1595. doi: https://doi.org/10.3390/rs13081595

15. Masiuk, O., Novitskyi, R., Hapich, H., & Chubchenko, Ye. (2023). Elements of assessment of the anthropogenic impact of a coal mining mine on the site of the Emerald Network using methods of remote sensing of the Earth. International Conference of Young Professionals «GeoTerrace-2023», Lviv: European Association of Geoscientists & Engineers. doi: https://doi.org/10.3997/2214-4609.2023510007

16. Matsiuk, V., & Masiuk, O. (2023). Using remote sensing imagery in the study of long-term dynamics of water bodies in the buffer zone of Vyazivotskyi Landscape Reserve. International Conference of Young Professionals «GeoTerrace-2023», Lviv: European Association of Geoscientists & Engineers. doi: https://doi.org/10.3997/2214-4609.2023510079

17. Mytsyk, L. P. (2016). Summary of grassland cover research conducted by the Complex Expedition of Oles Honchar Dnipro National University. In Biogeocoenological studies of forests in the steppe zone of Ukraine (pp. 83–98). Dnipro: Svidler A. L.

18. POWO. (2025). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from https://powo.science.kew.org/ 

19. Recio Espejo, J. M., Kotovych, O. V., Díaz del Olmo, F., Gorban, V. A., Cámara Artigas, R., Masyuk, O. M., & Borja Barrera, C. (2020). Palaeoecological aspects of a Ukrainian Upper Holocene chernozem. Ecology and Noospherology, 31(2), 59–64. doi: https://doi.org/10.15421/032009

20. Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., & Yang, Z. (2006). Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment, 103, 16–26. doi: https://doi.org/10.1016/j.rse.2006.03.008

21. Shevera, M. V., Orlov, O. O., Dziuba, T. P., Baranovski, B. O., Karmyzova, L. O., Ivanko, I. A., Nikolayeva, V. V., & Stotska, O. I. (2024). Typha laxmannii (Typhaceae) in Ukraine: Current distribution, ecological and coenotic peculiarities, invasiveness. Biologia, 79, 1147–1167. doi: https://doi.org/10.21203/rs.3.rs-2947977/v1

22. Tarasov, V. V. (2012). Flora of Dnipropetrovsk and Zaporizhia regions. Dnipro: Lira. Retrieved from https://www.zoology.dp.ua/wp-content/downloads/KEDU/Tarasov.pdf 

23. Thapa, S., Millan, V. E. G., & Eklundh, L. (2021). Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, phenocam) and satellite (MODIS, Sentinel-2). Remote Sensing, 13(8), 1597. doi: https://doi.org/10.3390/rs13081597

24. Tóth, T. (2010). Medium-term vegetation dynamics and their association with edaphic conditions in two Hungarian saline grassland communities. Grassland Science, 56, 13–18. doi: https://doi.org/10.1111/j.1744-697X.2009.00167.x

25. Ustymenko, P. M., & Dubyna, D. V. (2015). The Code of Phytocoenological Nomenclature of Ukraine (Draft). Ukrainian Botanical Journal, 72(2), 103–115. doi: https://doi.org/10.15407/ukrbotj72.02.103