The article presents the study of the bioelectric potential of forest biotopes of Pinus silvestris to evaluate the possibility of their usage as a bioelectricity source. The increase of bioelectric potential in dry soils independent of moisture level was revealed. The positive effect of soil humidity on the generation of bioelectric potential was shown. Insignificant daily and seasonal fluctuations of bioelectric parameters of forest biotopes open their prospects as an important source of renewable energy.
1. Auсina, A., Rudawska, M., Leski, T., Skridaila, A., Riepsas, E., & Iwanski, M. (2007). Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter. Applied and environmental microbiology, 73(15), 4867–4873. doi: https://doi.org/10.1128/AEM.00584-07
https://doi.org/10.1128/AEM.00584-07
2. Barvinskyi, A. V., & Tykhenko, R. V. (2015). Otsinka i prohnoz yakosti zemel [Land quality assessment and forecast]. Kyiv: Medinform [in Ukrainian].
3. Bodnar, V. O. (2016, April 1). Zahalna kharakterystyka lisiv ta lisovoho hospodarstva Ukrainy [General characteristics of Ukraine forests]. Public report of the State Agency of Forest Resources of Ukraine [in Ukrainian]. Retrieved from http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
4. Crow, P. (2005). The influence of soils and species on tree root depth. Forestry Commission, Edinburgh.
5. Dai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015). Electrical energy production from forest detritus in a forested wetland using microbial fuel cells. Global Change Biology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117
https://doi.org/10.1111/gcbb.12117
6. Eshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden Half (Fourth Edition). CRC Press, Boca Raton.
7. Fedoniuk, S., Kawalko, B., Kielbinska-Ryn, Z., Kowerski, M., Kuczabski, A., Malska, M., Matkowski, S., Miszczuk, A., Molas, W., Trochimczuk, S., & Zuchowski, W. (2005). Pogranicze Polsko-Ukrainskie. Srodowisko. Spoleczenstwo. Gospodarka [Polish-Ukrainian borderland. Environment. Society. Economy]. Zamosc: Wyzsza Szkola Zarzdzania i Administracji w Zamosciu [in Polish].
8. Ganatsas, P., & Spanos, I. (2005). Root system asymmetry of Mediterranean pines. Plant and Soil, 278, 75–83. doi: https://doi.org/10.1007/s11104-005-1092-3
https://doi.org/10.1007/s11104-005-1092-3
9. Index Mundi. (2019, December 28). Forest area (% of land area) - Country Ranking. Retrieved from https://www.indexmundi.com/facts/indicators/AG.LND.FRST.ZS/rankings
10. Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 110(C), 402–414. doi: https://doi.org/10.1016/j.rser.2019.05.016
https://doi.org/10.1016/j.rser.2019.05.016
11. Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
https://doi.org/10.1007/s00253-008-1410-9
12. Kouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T., & Watanabe, K. (2013). Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One, 8(11), Article e77443. doi: https://doi.org/10.1371/journal.pone.0077443
https://doi.org/10.1371/journal.pone.0077443
13. Munzenberger, B., Golldack, J., Ullrich, A., Schmincke, B., & Huttl, R. F. (2004). Abundance, diversity, and vitality of mycorrhizae of Scots pine (Pinus sylvestris L.) in lignite recultivation sites. Mycorrhiza, 14(3), 193–202. doi: https://doi.org/10.1007/s00572-003-0257-2
https://doi.org/10.1007/s00572-003-0257-2
14. Raudaskoski, M., & Salo, V. (2008). Dichotomization of mycorrhizal and NPA-treated short roots in Pinus sylvestris. Plant Signaling & Behavior, 3(2), 113–115. doi: https://doi.org/10.4161/psb.3.2.4972
https://doi.org/10.4161/psb.3.2.4972
15. Rusyn, I. B., & Medvediev, O. V. (2016). UA Patent No. 112093. Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent).
16. Rusyn, I. B., & Hamkalo, Кh. R. (2019). Bioelectricity production in an indoor plant-microbial biotechnological system with Alisma plantago-aquatica. Acta Biologica Szegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179
https://doi.org/10.14232/abs.2018.2.170-179
17. Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & Buisman, C. J. (2008). International Journal of Energy Research, 32(9), 870–876. doi: https://doi.org/10.1002/er.1397
https://doi.org/10.1002/er.1397
18. Sudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B. (2019). Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan. Indonesia Sensors, 19, 4647, 1–18. doi:https://doi.org/10.3390/s19214647
https://doi.org/10.3390/s19214647
19. Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology & Biochemistry, 74, 1271–1273. doi: https://doi.org/10.1271/bbb.90852
https://doi.org/10.1271/bbb.90852
20. Tou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & Кebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
https://doi.org/10.1080/15435075.2019.1650049
21. Ueoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K. (2016). Sizes of Anode and Cathode Affect Electricity Generation in Rice Paddy-Field Microbial Fuel Cells. Journal of Sustainable Bioenergy Systems, 06(01), 10–15. doi: https://doi.org/10.4236/jsbs.2016.61002
https://doi.org/10.4236/jsbs.2016.61002
22. Zinchenko, O. I., Salatenko, V. N., & Bilonozhko, M. A. (2001). Roslynnytstvo [Plant Growing]. Kyiv: Ahrarna osvita. [in Ukrainian]