The methodology based on fuzzy logic to compare several global maps of land cover was improved. The comparison of the newest global land cover products was carried out for territory of Ukraine.
- Mayaux P. et al .Validation of the global land cover 2000 map IEEE. Trans. Geosci. Remote Sensing, 44, 2006,pp. 1728–1737.
- Friedl M. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets.Friedl M. et al.Remote Sensing Environ,114, 2010,pp. 168–182.
- Bontemps S. GLOBCOVER 2009: Products Description and Validation Report (ESA and UCLouvain)/ Bontemps S et al //2011(available online at http://ionia1.esrin.esa.int/docs/GLOBCOVER2009_Validation_Report_2.2.pdf).
- Fritz S. Identifying and quantifying uncertainty and spatial disagreement in the comparison of global land cover for different applications.Fritz S. and See L. Glob. Change Biol, 14, 2008, pp. 1057–1075.
- Hagen A. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science. 2003,Vol. 17, Issue 3,pp. 235–249.
- ComberA., Fisher P.,WadsworthR. Integrating land cover data with different ontologies: identifying change from inconsistency. International Journal of Geographical Information Science,18(7), 2004,pp. 691–708.
- Fritz S., See L. Comparison of land cover maps using fuzzy agreement. Int. GIS, 2005, no.19,pp. 787–807.
- Land Cover Classification System: Classification Concepts and User Manual. Di Gregorio A. and Jansen L.2000, 190 p.
- Bartholomé E.and Belward A. S. GLC2000: a new approach to global land cover mapping from earth observation data.Int. J. Remote Sensing. 26, 2005, pp. 1959–1977.
- Fritz S., See L. et al. Highlighting continued uncertainty in global land cover maps for the user community.Environ. Res. Lett., 6. October-December 2011, 044005 (available at: http://iopscience.iop.org/1748-9326/6/4/044005/fulltext/#erl403921bib15).