Features of inventory of green plantings by automated terrestrial laser scanning methods

https://doi.org/10.23939/istcgcap2023.98.024
Received: September 06, 2023
Authors:
1
Lviv Polytechnic National University

The aim of this work is to investigate the process of obtaining necessary information about the metric parameters of small-area arrays, linearly arranged and individual green plantings on predominantly urbanized territories, and to apply the results of data processing in the compilation of topographic and special maps from the corresponding scanning materials. Methodology. For this purpose, terrestrial laser scanning methods, dynamic laser scanning as a data source for tree-level mapping of the territory, and as an information base for filling in the respective cadastres are subject to research. The possibilities of using data from these methods to obtain information about green plantings using modern software tools have been explored. Based on terrestrial laser scanning data performed in accordance with the requirements of regulatory spatial reference documents, data processing of terrestrial laser scanning was carried out using automated methods, namely the Terrasolid software suite. The need for more than 40% coverage of the tree trunk with a point cloud obtained from laser scanning to eliminate possible errors in determining the relevant parameters due to the heterogeneity of the structure of different tree trunks has been confirmed. Preliminary processing of scanning materials was carried out using FARO Scene 2020 software. Scientific novelty and practical significance. An experiment was conducted to analyze the creation of both a plan-altitude and an information base regarding green plantings on selected objects within the Zakarpattia region. The process of collecting data on green plantings was improved by using terrestrial laser scanning and partial GNSS measurements, instead of traditional topographic-geodetic methods. A table containing information on green planting data has been created for the studied objects' territory. Automated methods were used to gather this information, including details about their location in the adopted coordinate system and the trunk diameter at a height of 1.3 meters.

  1. Abegg, M., Kükenbrink, D., Zell, J., Schaepman, M. E., & Morsdorf, F. (2017). Terrestrial laser scanning for forest inventories – tree diameter distribution and scanner location impact on occlusion. Forests, 8(6), 184.137-179. https://doi.org/10.3390/f8060184
  2. Fol C. R., Kükenbrink D., Rehush N., Murtiyoso A., Griess V. C. (2023). Evaluating state-of-the-art 3D scanning methods for stem-level biodiversity inventories in forests. International Journal of Applied Earth Observation and Geoinformation, 122, 103396, https://doi.org/10.1016/j.jag.2023.103396
  3. Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., & Nothdurft, A. (2021). Measurement of forest inventory parameters with Apple iPad pro and integrated LiDAR technology. Remote Sensing, 13(16), 3129. https://doi.org/10.3390/rs13163129
  4. Kalvoda P., Nosek J, Kuruc M., Volarik T. and Kalvodova P. (2020) Accuracy Evaluation and Comparison of Mobile Laser Scanning and Mobile Photogrammetry Data. 2020. IOP Conference Series: Earth and Environmental Science, Volume 609. https://doi.org/10.1088/1755-1315/609/1/012091
  5. Kuželka K., Surový P. (2021) Mathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 259-281. https://doi.org/10.1016/j.isprsjprs.2021.06.013
  6. Li J., Yang B., Yang Y., Zhao X., Liao Y., Zhu N., Dai W., Liu R., Chen R., Dong Z. (2023). Real-time automated forest field inventory using a compact low-cost helmet-based laser scanning system. Int. J. Appl. Earth Obs. Geoinf., 118, 103299, https://doi.org/10.1016/j.jag.2023.103299
  7. Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., ... & Wang, Y. (2018). International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS journal of photogrammetry and remote sensing, 144, 137-179. https://doi.org/10.1016/j.isprsjprs.2018.06.021
  8. Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., ... & Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006
  9. Maas, H. G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic forest inventory parameter determination from terrestrial laser scanner data. International journal of remote sensing, 29(5), 1579-1593. https://doi.org/10.1080/01431160701736406
  10. Ritter, T., Schwarz, M., Tockner, A., Leisch, F., & Nothdurft, A. (2017). Automatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning. Forests, 8(8), 265 https://doi.org/10.3390/f8080265
  11. Rogovskyi, S. V., Zhikhareva, K. V., Oleshko, O. G., Strutynska, Yu. V., & Kolotnytska, A. V. (2021). Modern problems of plant inventory in urban plantations and experience in solving them. Scientific Bulletin of the National Forestry University of Ukraine: (in Ukrainian) https://rep.btsau.edu.ua/handle/BNAU/7163
  12. Semko, I. D. (2015). The method of determining the above-ground phytomass of a Scots pine stand based on the materials of aerial lidar surveying (in Ukrainian): https://www.casre.kiev.ua/images/files/paper-semko.pdf
  13. Serrano, F. L., Rubio, E., Morote, F. G., Abellán, M. A., Córdoba, M. P., Saucedo, F. G., ... & González, J. G. (2022). Artificial intelligence-based software (AID-FOREST) for tree detection: A new framework for fast and accurate forest inventorying using LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, 113, 103014.. 113.2022. https://doi.org/10.1016/j.jag.2022.103014.
  14. Stoli, S., & Rex, D. (2014). Applications of 3D Laser Scanning in a Production Environment.
  15. Strzeliński P., Jagodziński A. M., Wencel A., Zawiła Niedźwiecki T. (2008). Szacowanie zasobów węgla w lasach z wykorzystaniem technik geomatycznych. Techniki geomatyczne w inwentaryzacji lasu — potrzeby i  możliwości. Warszawa: Wyd. SGGW, 114–125.
  16. TerraScan User Guide URL: https://www.terrasolid.com/guides/tscan/crtrees.html
  17. Tockner, A., Gollob, C., Kraßnitzer, R., Ritter, T., & Nothdurft, A. (2022). Automatic tree crown segmentation using dense forest point clouds from Personal Laser Scanning (PLS). International Journal of Applied Earth Observation and Geoinformation, 114, 103025. https://doi.org/10.1016/j.jag.2022.103025
  18. Trochta, J., Krůček, M., Vrška, T., & Král, K. (2017). 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PloS one, 12(5), e0176871. https://doi.org/10.1371/journal.pone.0176871
  19. Vash, Y., Hubar, Yu. (2022) The method of optimizing measurements with a ground laser scanner of the green plants of T. Masarik park in Uzhgorod. In International Conference of Young Professionals, GeoTerrace 2022, 1, 1-5. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2022590048
  20. Vash, Y., Gubar, Yu, Kalynych, I. & Chetverikov, B. (2022). Inventory of horticultural facilities of T. Masaryk Square in Uzhgorod with the use of TLS. (in Ukrainian) https://doi.org/10.33841/1819-1339-2-44-121-129
  21. Verkhovna Rada of Ukraine (1998). On the approval of the Instructions for topographical surveying at scales of 1: 5000, 1: 2000, 1: 1000 and 1: 500 (DSTU 2.04-02-98). Ukrgeodeskartography; Order No. 56 of April 9 (in Ukrainian) https://zakon.rada.gov.ua/laws/show/z0393-98
  22. Verkhovna Rada of Ukraine (2001). On the approval of the Instructions for the inventory of green spaces in populated areas of Ukraine State Committee for Construction, Architecture and Housing Policy of Ukraine Order of December 24 No. 226 (in Ukrainian) https://zakon.rada.gov.ua/laws/show/z0182-02#Text
  23. Verkhovna Rada of Ukraine (2011). Cabinet of Ministers of Ukraine Decree No. 559 of May 25 on the urban planning cadastre (in Ukrainian) https://zakon.rada.gov.ua/laws/show/559-2011-%D0%BF#Text
  24. Wang, Y., Pyörälä, J., Liang, X., Lehtomäki, M., Kukko, A., Yu, X., ... & Hyyppä, J. (2019). In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest. Remote Sensing of Environment, 232, 111309. https://doi.org/10.1016/j.rse.2019.111309
  25. Wilkes, P., Disney, M., Armston, J., Bartholomeus, H., Bentley, L., Brede, B., ... & Yang, W. (2022). TLS2trees: A scalable tree segmentation pipeline for TLS data. Methods in Ecology and Evolution. https://doi.org/10.1101/2022.12.07.518693
  26. Witzmann, S., Matitz, L., Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., ... & Nothdurft, A. (2022). Accuracy and precision of stem cross-section modeling in 3D point clouds from TLS and caliper measurements for basal area estimation. Remote Sensing, 14(8), 1923. https://doi.org/10.3390/rs14081923
  27. Yalova, К. (2019). Conceptual propositions of the city’s green plantations monitoring automation  Computer-integrated technologies: education, science, production, (35), 112-116. (in Ukrainian). http://cit-journal.com.ua/index.php/cit/article/view/84