The paper considers the problem of stability of CMOS temperature sensors under variations in temperature and supply voltage. A critical analysis of existing methods (SPICE modeling, PTAT/CTAT models, Monte Carlo analysis, calibration, and statistical approaches) is performed, and their limitations are identified, in particular, insufficient consideration of nonlinear effects, noise, and the multifactorial influence of external conditions. A mathematical model is proposed taking into account linear, quadratic, and mixed dependencies, which allows quantitatively assessing the sensitivity and stability of the sensor. The results obtained are of practical importance for creating highly reliable CMOS sensors in industrial, automotive, and aviation applications.
- Chen, C.-C., Chen, C.-L., Chu, Y.-C., & Lin, G.-Y.(2023). An Area-Effective High-Resolution All-Digital CMOS Time-Domain Smart Temperature Sensor. Circuits, Systems, and Signal Processing. https://doi.org/10.1007/s00034-023-02507-y
- Chen, C.-C., Chen, C.-L., Fang, W., & Chu, Y.-C. (2020).All-Digital CMOS Time-to-Digital Converter With Temperature-Measuring Capability. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(9), 2079–2083. https://doi.org/10.1109/tvlsi.2020.3007587
- El-Zarif, N., Amer, M., Ali, M., Hassan, A., Oukaira, A., Fa- yomi, C. J. B., & Savaria, Y. (2024). Calibration of ring oscil- lator-based integrated temperature sensors for power mana- gement systems. Sensors, 24(2), 440. https://doi.org/10.3390/ s24020440
- Jain, A., Jiang, H., Pochet, C., & Hall, D. A. (2021). A 310 nw temperature sensor achieving 9.8 mk resolution using a dfll-based readout circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 1.-https://doi.org/ 10.1109/tcsii.2021.3106265
- Khabay, A., Baktybayev, M., Ibekeyev, S., Sarsenbayev, N., Junussov, N., & Zhumakhan, N. (2024). Improvement of fiber optic sensor measurement methods for temperature and humidity measurement in microelectronic circuits. Eastern-European Journal of Enterprise Technologies, 3(5 (129)), 36–44. https://doi.org/10.15587/1729-4061.2024.306711
- Peng, H. (2023). High performance low power CMOS temperature sensor. Journal of Computational Methods in Sciences and Engineering, 23(6), 3447–3460. https://doi.org/ 10.3233/jcm-237012
- Qian, F., Li, Y., Zhang, X., Xi, J., & He, L. (2022). An all-digital CMOS temperature sensor with a wide supply voltage range. IEICE Electronics Express. https://doi.org/ 10.1587/elex.19.20220280
- Rinaldi, N., Liguori, R., May, A., Rossi, C., Rommel, M., Rubino, A., Licciardo, G. D., & Di Benedetto, L. (2023). A 4H-SiC CMOS Oscillator-Based Temperature Sensor Operating from 298 K up to 573 K. Sensors, 23(24), 9653. https://doi.org/10.3390/s23249653
- Stancu, C., Neacsu, A., Profirescu, O., Dobrescu, D., & Dobrescu, L. (2023). Temperature and power supply com- pensated CMOS clock circuit based on ring oscillator. Electronics, 12(3), 507. https://doi.org/10.3390/ electronics12030507
- Tolić, I. P., Kleinschuster, M., Schatzberger, G., Mandić, T., & Barić, A. (2025). Smart temperature sensor using ring oscillators and all-igital sigma-delta modulator in 180 nm technology. International Journal of Circuit Theory and Applications. https://doi.org/10.1002/cta.4549
- Tolic, I. P., Schatzberger, G., & Baric, A. (2022). Ring oscillator based smart temperature sensor using all-digital sigma-delta modulator. 2022 austrochip workshop on microelectronics (austrochip). IEEE. https://doi.org/ 10.1109/austrochip56145.2022.9940813
- Wei, R., & Bao, X. (2018). A low power energy-efficient precision CMOS temperature sensor †. Micromachi- nes, 9(6), 257. https://doi.org/10.3390/mi9060257
- Xie, L., Liu, J., Wang, Y., & Wen, G. (2014). A low-power CMOS smart temperature sensor for RFID application. Journal of Semiconductors, 35(11), 115002. https://doi.org/10.1088/1674-4926/35/11/115002
- Xu, Z., Zhang, X., Chen, S., Cheong, J., & Yao, L. (2023). A temperature-to-frequency converter-based on-chip tem- perature sensor with an inaccuracy of +0.65 °C/−0.49 °C. Sensors, 23(11), 5169. https://doi.org/10.3390/s23115169