ANALYSIS OF THE STABILITY OF A CMOS TEMPERATURE SENSOR UNDER TEMPERATURE AND POWER-SUPPLY VARIATIONS

1
Vinnytsia National Technical University
2
Vinnytsia National Technical University

The paper considers the problem of stability of CMOS temperature sensors under variations in temperature and supply voltage. A critical analysis of existing methods (SPICE modeling, PTAT/CTAT models, Monte Carlo analysis, calibration, and statistical approaches) is performed, and their limitations are identified, in particular, insufficient consideration of nonlinear effects, noise, and the multifactorial influence of external conditions. A mathematical model is proposed taking into account linear, quadratic, and mixed dependencies, which allows quantitatively assessing the sensitivity and stability of the sensor. The results obtained are of practical importance for creating highly reliable CMOS sensors in industrial, automotive, and aviation applications.

  1. Chen, C.-C.,  Chen, C.-L.,  Chu, Y.-C.,  &  Lin, G.-Y.(2023). An Area-Effective High-Resolution All-Digital CMOS  Time-Domain  Smart  Temperature Sensor. Circuits,                                      Systems,            and            Signal Processing. https://doi.org/10.1007/s00034-023-02507-y
  2. Chen, C.-C., Chen, C.-L., Fang, W., & Chu, Y.-C. (2020).All-Digital CMOS Time-to-Digital Converter With Temperature-Measuring Capability. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(9), 2079–2083. https://doi.org/10.1109/tvlsi.2020.3007587
  3. El-Zarif, N., Amer, M., Ali, M., Hassan, A., Oukaira, A., Fa- yomi, C. J. B., & Savaria, Y. (2024). Calibration of ring oscil- lator-based integrated temperature sensors for power mana- gement systems. Sensors, 24(2), 440. https://doi.org/10.3390/ s24020440
  4. Jain, A., Jiang, H., Pochet, C., & Hall, D. A. (2021). A 310 nw temperature sensor achieving 9.8 mk resolution using a dfll-based readout circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 1.-https://doi.org/ 10.1109/tcsii.2021.3106265
  5. Khabay, A.,             Baktybayev, M.,             Ibekeyev, S., Sarsenbayev, N., Junussov, N., & Zhumakhan, N. (2024). Improvement of fiber optic sensor measurement methods for temperature and humidity measurement in microelectronic circuits. Eastern-European Journal of Enterprise   Technologies, 3(5   (129)),    36–44. https://doi.org/10.15587/1729-4061.2024.306711
  6. Peng, H. (2023). High performance low power CMOS temperature sensor. Journal of Computational Methods in Sciences and Engineering, 23(6), 3447–3460. https://doi.org/ 10.3233/jcm-237012
  7. Qian, F., Li, Y., Zhang, X., Xi, J., & He, L. (2022). An all-digital CMOS temperature sensor with a wide supply voltage range. IEICE Electronics Express. https://doi.org/ 10.1587/elex.19.20220280
  8. Rinaldi, N., Liguori, R., May, A., Rossi, C., Rommel, M., Rubino, A., Licciardo, G. D., & Di Benedetto, L. (2023). A 4H-SiC CMOS Oscillator-Based Temperature Sensor Operating from 298 K up to 573 K. Sensors, 23(24), 9653. https://doi.org/10.3390/s23249653
  9. Stancu, C., Neacsu, A., Profirescu, O., Dobrescu, D., & Dobrescu, L. (2023). Temperature and power supply com- pensated CMOS clock circuit based on ring oscillator. Electronics, 12(3), 507. https://doi.org/10.3390/ electronics12030507
  10. Tolić, I. P., Kleinschuster, M., Schatzberger, G., Mandić, T., & Barić, A. (2025). Smart temperature sensor using ring oscillators and all-igital sigma-delta modulator in 180 nm technology. International Journal of Circuit Theory and Applications. https://doi.org/10.1002/cta.4549
  11. Tolic, I. P., Schatzberger, G., & Baric, A. (2022). Ring oscillator based smart temperature sensor using all-digital sigma-delta modulator. 2022 austrochip workshop on microelectronics (austrochip). IEEE. https://doi.org/ 10.1109/austrochip56145.2022.9940813
  12. Wei, R., & Bao, X. (2018). A low power energy-efficient precision CMOS temperature sensor †. Micromachi- nes, 9(6), 257. https://doi.org/10.3390/mi9060257
  13. Xie, L., Liu, J., Wang, Y., & Wen, G. (2014). A low-power CMOS smart temperature sensor for RFID application. Journal of Semiconductors, 35(11), 115002. https://doi.org/10.1088/1674-4926/35/11/115002
  14. Xu, Z., Zhang, X., Chen, S., Cheong, J., & Yao, L. (2023). A temperature-to-frequency converter-based on-chip tem- perature sensor with an inaccuracy of +0.65 °C/−0.49 °C. Sensors, 23(11), 5169. https://doi.org/10.3390/s23115169