USING A GENETIC ALGORITHM FOR THE STUDY OF DIESEL AND BIODIESEL MIXTURES

1
Lviv Polytechnic National University
2
Regina Kalpokaite-Dickuviene, Laboratory of Materials Research & Testing, Lithuanian Energy Institute, Lithuania

A new methodology for optimizing the composition of a mixture of diesel and biodiesel fuel using a genetic algorithm that determines the optimal percentage ratio of components is proposed. The main components of the biofuel mixture are diesel fuel and biodiesel, made 100% from bioresources. The resulting mixture was evaluated using a fitness function that took into account the fuel density. The simulation results may be useful for further production and research of new fuel mixtures, because they demonstrate the effectiveness of using a functional approach compared to random laboratory experiments.

  1. Marina Corral Bobadilla, Roberto Fernández Martínez, Rubén Lostado Lorza, Fátima Somovilla Gómez, Eliseo P. Vergara González Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines. // URL: https://www.mdpi.com/ 1996-1073/11/11/2995/. Energies 2018, 11(11), 2995; https://doi.org/10.3390/en11112995/
  2. Lopes, M.V.; Barradas Filho, A.O.; Barros, A.K.; Viegas, I.M.A.; Silva, L.C.O.; Marques, E.P.; Marques, A.L.B. Attesting compliance of biodiesel quality using composition data and classification methods. Neural Comput. Appl. 2017, 1–13. [Google Scholar] [CrossRef
  3. Betiku, E.; Okunsolawo, S.S.; Ajala, S.O.; Odedele, O.S. Performance evaluation of artificial neural network coupled with generic algorithm and response surface  methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renew. Energy 2015, 76, 408–417. [Google Scholar] [CrossRef]
  4. Lautenbach, S.; Volk, M.; Strauch, M.; Whittaker, G.; Seppelt, R. Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment. Environ. Model. Softw. 2013, 48, 98–112. [Google Scholar] [CrossRef]
  5. Wenbo Ai Haeng Muk Cho Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review. Energies 2024, 17(19), 4805; https://doi.org/10.3390/en17194805
  6. Su, Y.; Zhang, P.; Su, Y. An Overview of Biofuels Policies and Industrialization in the Major Biofuel Producing Countries. Renew. Sustain. Energy Rev. 2015, 50, 991– 1003. [Google Scholar] [CrossRef]
  7. Souza, T.A.Z.; Pinto, G.M.; Julio, A.A.V.; Coronado, C.J.R.; Perez-Herrera, R.; Siqueira, B.O.P.S.; da Costa, R.B.R.; Roberts, J.J.; Palacio, J.C.E. Biodiesel in South American Countries: A Review on Policies, Stages of  Development and Imminent Competition with Hydrotreated Vegetable Oil. Renew. Sustain. Energy Rev. 2022, 153, 111755. [Google Scholar] [CrossRef]
     
  8. Giakoumis, E.G.; Dimaratos, A.M.; Rakopoulos, C.D.; Rakopoulos, D.C. Combustion Instability during Starting of Turbocharged Diesel Engine Including Biofuel Effects. J. Energy Eng. 2017, 143, 4016047. [Google Scholar] [CrossRef]
  9. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
  10. Kyriklidis, C.; Dounias, G. Evolutionary computation for resource leveling optimization in project management. In Integrated Computer-Aided Engineering; IOS Press: Amsterdam, The Netherland, 2016; Volume 23, pp. 173–184. [Google Scholar]
  11. Kyriklidis, C.; Kyriklidis, M.-E.; Loizou, E.; Stimoniaris, A.; Tsanaktsidis, C.G. Optimal Bio Marine Fuel production evolutionary Computation: Genetic algorithm approach for raw materials mixtures. Fuel 2022, 323, 124232. [Google Scholar] [CrossRef]