The spin-polarized electronic and magnetic properties of zinc selenide heavy doped with chromium

: pp. 28-31
Lviv Polytechnic National University

At the first stage, the structure of the ZnSe crystal doped with chromium atoms (ZnCrSe) has been found by optimization procedure. At the second stage, the electronic properties of this material have been evaluated within the two approaches. The exchange-correlation functionals used here are based on the generalized gradient approximation (GGA) and the hybrid functional PBE0. The GGA approach provides the metallic state for electrons with the spin up, and for opposite spin orientation the material ZnCrSe bahaves as semiconductor, with the band gap of 2.48 eV. The hybrid functional approach also gives a gapless state for a spin up electron states, and for a spin down it provides the forbidden gap value of 2.39 eV. The magnetic moment of the unit cell, found with the two functionals, is the same and equals to 4 (Bohr magnetons). So, the calculations with the two exchange-correlation functionals provide the prediction of half-metallic properties of the ZnCrSe material, which is an interesting candidate for spintronic applications.

  1. H. Zaari, M. Boujnah, A. El Hachimi, A. Benyoussef, and A. El Kenz, ”Optical properties of ZnTe doped with transition metals (Ti, Cr and Mn)”, Optical and Quantum Electronics, vol. 46, no.1, pp. 75-86, 2014.
  2. R.Yu. Petrus, H.A. Ilchuk, V.M. Sklyarchuk, A.I. Kashuba, I.V. Semkiv,  and E.O. Zmiiovska, ”Transformation of Band Energy Structure of Solid Solutions CdMnTe”, J.  Nano- Electron. Phys., vol. 10, no. 6, pp. 06042(5), 2018.
  3. S.V. Syrotyuk and O.P. Malyk, ”Effect of Strong Correlations on the Spin-polarized Electronic Energy Bands of the CdMnTe Solid Solution”, J. Nano- Electron. Phys., vol. 11, no.1, pp. 01009(6), 2019.
  4. P.E. Blöchl, ”Projector augmented-wave method”, Phys. Rev. B, vol. 50, no. 24, pp. 17953–17979, 1994.
  5. F. Tran, P. Blaha, K. Schwarz, and P. Novak, ”Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides”, Phys. Rev. B, vol. 74, pp. 155108(10), 2006.
  6. J.P. Perdew, K. Burke, and M. Ernzerhof, ”Generalized Gradient Approximation Made Simple”, Phys. Rev. Letters, vol. 77, pp. 3865–3868, 1996.
  7. S. V. Syrotyuk, Yu. M. Khoverko, N. O. Shcherban, and A. A. Druzhinin, ”Effect of the strong electron correlation on the spin-resolved electronic structure of the doped crystals Si < B, Fe>, Si < B, Co > and Si < B, Ni>”, Molecular Crystals and Liquid Crystals, vol. 700, no.1, pp. 1-12, 2020.
  8. S. Babaie-Kafaki and Z. Aminifard, ”Two–parameter scaled memoryless BFGS methods with a nonmonotone choice for the initial step length”, Numer. Algorithms, vol. 82, no. 4, pp. 1345–1357,  2019.
  9. X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, et al., ”Recent developments in the ABINIT software package”, Comput. Phys. Comm., vol. 205, pp. 106 -131, 2016.
  10.  T. Graf, C. Felser and  S.S.P. Parkin, ”Simple rules for the understanding of Heusler compounds”, Prog.  Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011.
  11.  K. Elphick, et al., ”Heusler alloys for spintronic devices: review on recent development and future perspectives”, Sci. Technol Adv. Mater, vol. 22, no.1, pp. 235-271, 2021.