Transport phenomena in copper doped cadmium telluride: calculation from the first principles

2022;
: pp. 37-43
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

In the presented work, the method of determining the energy spectrum, the wave function of the heavy hole and the crystal potential in CdTe at an arbitrarily given temperature is considered. Using this approach within the framework of the supercell method the temperature dependences of the ionization energies of various types of defects caused by the introduction of copper impurity in cadmium telluride are calculated. Also the proposed method makes it possible to define the temperature dependence   of the optical and acoustic deformation potentials, as well as the temperature dependence of the scattering parameters of heavy holes on ionized impurities, polar optical, piezooptical and piezoacoustic phonons. Within the framework of short-range scattering models, the temperature dependences of the heavy hole mobility and Hall factor are considered.

  1. I. Sankin and D. Krasikov, "Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers", Phys. Status Solidi A, vol. 215, p.1800887-1-11, 2019.
    https://doi.org/10.1002/pssa.201800887
  2. Su-Huai. Wei, and S. B. Zhang, “Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe”, Phys. Rev. B, vol. 66, p.155211-1-10, 2002.
    https://doi.org/10.1103/PhysRevB.66.155211
  3. Jie Ma, et al., “Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe”, Phys. Rev. B, vol. 83, p. 245207-1-7 2011. https://doi.org/10.1103/PhysRevB.83.245207
  4. Ji-Hui Yang, et al., “Review on first-principles study of defect properties of CdTe as a solar cell absor-ber”, Semicond. Sci.Technol., vol. 31 p. 083002-1-22, 2016.
    https://doi.org/10.1088/0268-1242/31/8/083002
  5. D. Krasikov, et al., “First-principles-based analysis of the influence of Cu on CdTe electronic properties”, Thin Solid Films, vol. 535 pp. 322-325, 2013.
    https://doi.org/10.1016/j.tsf.2012.10.027
  6. W. Orellana, E. Menendez-Proupin, and M. A. Flo-res, “Energetics and electronic properties of interstitial chlorine in CdTe”, Phys. Status Solidi B, vol. 256, p.1800219-1-7, 2019.
    https://doi.org/10.1002/pssb.201800219
  7. I. Sankin, and D. Krasikov, “Defect interactions and the role of complexes in CdTe solar cell absorber”, J. Mater. Chem. A, vol. 5, pp. 3503-3515, 2017.
    https://doi.org/10.1039/C6TA09155E
  8. O. Malyk and S. Syrotyuk, “New scheme for calcu-lating the kinetic coefficients in CdTe based on first-principle wave function”, Comput. Mater. Sci., vol. 139, pp. 387-394, 2017.
    https://doi.org/10.1016/j.commatsci.2017.07.039
  9. K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles”, Phys. Rev.B, vol. 85, p. 115317-1-16, 2012.
    https://doi.org/10.1103/PhysRevB.85.115317
  10.  O. Restrepo, K. Varga, and S. Pantelides, “First-principles calculations of electron mobilities in silicon: phonon and Coulomb scattering”, Appl. Phys. Lett., vol. 94, p. 212103-1-3, 2009.
    https://doi.org/10.1063/1.3147189
  11. O.D. Restrepo, et al., “First principles method to simulate electron mobilities in 2D materials”, New J. Phys., vol. 16, p. 105009-1-12, 2014.
    https://doi.org/10.1088/1367-2630/16/10/105009
  12. X. Li, et al., “Intrinsic electrical transport properties of monolayer silicene and MoS2 from first princi-ples”, Phys. Rev. B, vol. 87, p. 115418-1-9, 2013.
    https://doi.org/10.1103/PhysRevB.87.115418
  13. Wu. Li, “Electrical transport limited by electron-phonon coupling from Boltzmann transport equa-tion: an ab initio study of Si, Al, and MoS2”, Phys. Rev. B, vol. 92, p. 075405-1-10, 2015.
    https://doi.org/10.1103/PhysRevB.92.075405
  14. O.P. Malyk, S.V. Syrotyuk, “The local electron in-teraction with point defects in sphalerite zinc se-lenide: calculation from the first principles”, J. Electron. Mater., vol. 47, pp. 4212-4218, 2018.
    https://doi.org/10.1007/s11664-018-6068-1
  15. O.P. Malyk, “Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1 £ x £ 0.5) solid solution: ab initio approach”, J. Electron. Mater., vol. 49, pp. 3080-3088, 2020.
    https://doi.org/10.1007/s11664-020-07982-6
  16. G.L. Hansen, J.L. Schmit, and T.N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe”, J. Appl. Phys., vol. 53, pp. 7099- 7101, 1982.
    https://doi.org/10.1063/1.330018
  17. A. Haug, “Zur statischen Näherung des Festkörper-problems”, Z. Physik, vol. 175, pp. 166-171, 1963.
    https://doi.org/10.1007/BF01375197
  18. C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978. https://doi.org/10.1007/978-1-4612-6333-3
  19. B. Segall and D.T.F. Marple, In Properties of compo-unds: Physics and Chemistry of II-VI Compounds, Eds. M. Aven and J. S. Prener, North Holland, Amsterdam: Intersciemce (Wiley), p. 317, 1967.
  20. D. de Nobel, “Phase equilibria and semiconducting properties of cadmium telluride”, Philips Res. Rep., vol. 14, pp. 361-399, 1959.
  21. S. Yamada, “On the electrical and optical properties of p-type cadmium telluride crystals”, J. Phys. Soc. Jpn., vol. 15, pp.1940-1944, 1960.
     https://doi.org/10.1143/JPSJ.15.1940
  22. L. S. Dang, G. Neu, and R. Romestain, “Optical detection of cyclotron resonance of electron and holes in CdTe”, Solid State Commun., vol. 44, pp. 1187-1190, 1982.
    https://doi.org/10.1016/0038-1098(82)91082-1
  23. O.P. Malyk, “Electron scattering in Hg1-xCdxTe at high temperature”, Ukr. J. Phys., vol. 35, pp. 1374-1376, 1990.
  24.  O.P. Malyk, “Nonelastic charge carrier scattering in mercury telluride”, J. Alloys Compd., vol. 371/1-2 pp. 146-149, 2004.
    https://doi.org/10.1016/j.jallcom.2003.07.033