Visualization of color label sensors in microelectromechanical systems

2023;
: pp. 9-14
1
Lviv Polytechnik National University
2
Lviv Polytechnic National University, International Laboratory of High Magnetic Fields and Low Temperatures
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The article presents the design and technological features of creating color labels-sensors of microelectromechanical systems intended for monitoring physicochemical parameters under the conditions of high- level electromagnetic interference. The software module of the hardware and software complex for the visualization of spectral intensity by converting it into an RGB colour model has been created. The algorithm for carrying out the procedure for calculating the color rendering index is shown and the main parameters of temperature colors in a wide range of visible radiation waves are determined

  1. S. Y. Han, K. S. Jeon, S. M. Seo, M. S. Seo, and S.-W. Jung, “Design of a Multifunctional Double-Active-Layer Thin-Film Transistor for Photosensing Applications”, IEEE Electron Device Letters, Vol. 34, No. 1, pp. 66–68, 2013. doi: 10.1109/LED.2012.2223811.
  2. K.Tai, Ya-Hsiang, Lu-Sheng Chou, and Hao-Lin Chiu , “Gap-Type a-Si TFTs for Front Light Sensing Application,” Journal of Display Technology, vol. 7, no. 12, pp. 679–683, 2011.
    https://doi.org/10.1109/JDT.2011.2164054
  3. A. Druzhinin, Yu. Khoverko, I. Kogut, and R. Koretskii, “Properties of low-dimentional polysilicon in SOI structures for low temperature sensors“, Advanced Materials Research, Vol. 854, pp. 49–55, 2014 doi: 10.4028/www.scientific.net/AMR.854.49
  4. V. Holota, I. Kogut, A. Druzhinin, and Y. Khoverko, “High sensitive active MOS photo detector on the local 3D SOI-structure,” Advanced Materials Research, Vol. 854, P. 45–47, 2014. doi:10.4028/www.scientific.net/amr.854.45.
  5. L. -G. Chen, D. -Y. Wu and M. S. . -C. Lu, "An integrated micromanipulation and biosensing platform built in glass-based LTPS TFT technology," SENSORS, 2012 IEEE, Taipei, Taiwan, 2012, pp. 1-4, doi: 10.1109/ICSENS.2012.6411063.
  6. T. R. Wolinski, W.J. Bock, and A. Jarmolik, “Development of fiber optic liquid crystal sensor for pressure measurement,” Instrumentation and Measurement Technology Conference, p. 664, IMTC/95, 1995.
  7. J. Namkung, R. Lindquist and A. Abu-Abed, "Application to shear force sensors by homeotropic liquid crystal (LC) orientation (non-reviewed)," IEEE SoutheastCon 2008, Huntsville, AL, USA, 2008, pp. 80-80, doi: 10.1109/SECON.2008.4494260
  8. T. Sakuraia. T. Ohashia. H. Kitazumea, M. Kubotab,T.Suemasua, and K. Akimotoa, ”Structural control of organic solar cells based on nonplanar metallophthalocyanine/ C60 heterojunctions using organic buffer layers,” Organic Electronics, vol. 12, no. 6, pp. 966–973, 2011. doi: 10.1016/j.orgel.2011.03.016
  9. T. Miyadera, Z. Wang, T. Yamanari, K. Matsubara and Yu. Yoshida, “Efficiency limit analysis of organic solar cells: model simulation based on vanadyl phthalocyanine / C60 planar junction cell,” Japanese Journal of Applied Physics, vol. 53, no. 1S, P. 01AB12, 2014. doi: 10.7567/JJAP.53.01AB12
  10.  H.Seidel, L.Csepregi, A.Heuberger, and H.Baumgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, J.Electrochem.Soc, vol.137, no. 11, pp.3612–3625, 1990.
    https://doi.org/10.1149/1.2086277
  11.  H.Schroder, E.Obermeier, and A.Steckenborn, “Micropiramidal hillocks on KOH etched {100} silicon surfaces: formation, prevention and removal”, J.Micromech. Microeng, vol.9, pp.139–145, 1999.
    https://doi.org/10.1088/0960-1317/9/2/309
  12.  J. Schanda, “CIE colorimetry”, Colorimetry: Understanding the CIE system, pp.25-78, 2007. DOI:10.1002/9780470175637
  13. Li Changjun, Cui Guihua, Manuel Melgosa, Xiukai Ruan, Yaoju Zhang, Long Ma, Kaida Xiao, and M. Ronnier Luo, "Accurate method for computing correlated color temperature," Opt. Express 24, pp.14066-14078, 2016. https://doi.org/10.1364/OE.24.014066
  14. S. Jost, C. Cauwerts, and P. Avouac, "CIE 2017 color fidelity index Rf: a better index to predict perceived color difference?," J. Opt. Soc. Am. A 35, pp.B202-B213, 2018. https://doi.org/10.1364/JOSAA.35.00B202
  15. Ocean Optics OmniDriver Programming Guide [Electronic resource]: https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/software-downloads-installers/omnidriver_programming_manual.pdf.
  16. T. Dyhdalovych, A. Fechan, S. Kutsiy and S. Melnykov, “Development of the automated system of analysis and quality assessment of visible light sources”, IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 694-697, 2022. doi: 10.1109/TCSET55632.2022.9767066
  17. P. I. Baranskyi, A. V. Fedorov, and G. P. Gaidar, Physical properties of silicon and germanium crystals in the fields of effective external influence, Lutsk: Nastyrya, p. 280, 2000. (in Ukrainian)
  18. Aksimentyeva O., Konopelnik O., Cherpak V., Stakhira P., Fechan A., and Hlushyk I. , “Conjugated polyaminoarenes as electrochromic layers for non-emissive displays”,  Ukrainian Journal of Physical Optics  6(1), pp. 27 – 32, 2005.
  19. I. P. Ilchishin, O. V. Yaroshchuk, and E. A. Shaidyuk, “Phototuning of the lasing spectra of doped cholesteric liquid crystals,” Ukr. J. Phys., vol. 50, no.12, pp. 1333–1338, 2005.
  20. T. H. Dudok, V. I. Savaryn, O. M. Krupych, A. V. Fechan, E. Lychkovskyy, V. V. Cherpak, B. Pansu, and Yu. A. Nastishin, “Lasing in imperfectly aligned cholesterics,” Applied optics, 54 (33), pp. 9644 – 9653, 2014. https://doi.org/10.1364/AO.54.009644
  21. CIE. Fundamental chromaticity diagram with physiological axes. Parts 1 and 2. Technical Report 170-1. Vienna: Central Bureau of the Commission Internationale de l' Éclairage, 2006.
  22. Windows Presentation Fundation Documentation [Electronic resource]: https://docs.microsoft.com/en-us/dotnet/desktop/wpf/?view= netdesktop-6.0
  23. SQLite Documentation [Electronic resource]: https://www.sqlite.org/docs.html