Active light modulation enables precise control over such light properties as intensity, phase, frequency, and polarization. This article examines electrooptic (EO), acousto-optic (AO), and magneto-optic (MO) modulation methods, analyzing their principles, advantages, and limitations for high-speed optical systems.
The EO modulation, based on changes in the refractive index under the influence of an electric field, provides ultrafast signal modulation but is sensitive to electromagnetic interference. The AO modulation uses acoustic waves to periodically vary the refractive index, allowing high-speed operation but requiring significant energy. The MO modulation utilizes magnetized materials for efficient Q-switching, but faces challenges such as lattice mismatch and photon integration. A comparative analysis highlights the EO modulation as the optimal one for high-speed optical networks, AO being fit for spectroscopy and telecommunications, and MO for Qswitched lasers and integrated photonics. The results obtained support advances in next-generation optical devices, emphasizing the need for further research in material optimization and system integration.
- A. Korpel, Acousto-Optics, 2nd ed., Marcel Dekker, 1997.
- J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, Wiley, 1992.
- N. Uchida and A. Ohmachi, "Elastic and Photoelastic Properties of Silicon and Their Application to the Brillouin Scattering," Journal of the Physical Society of Japan, vol. 34, no. 2, pp. 651-655, 1973.
- P. Yeh, Optical Waves in Layered Media, Wiley, 1988.
- R.W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, 2008.
- S.E. Harris, "Modulation of Light," in Quantum Electronics: A Treatise, vol. 1, H. Rabin and C.L. Tang, Eds., Academic Press, pp. 1-64, 1975.
- B. Saleh and M. Teich, Fundamentals of Photonics, 2nd ed., Wiley, 2007.
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Hoboken, NJ, USA: Wiley, 2019.
- A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications. New York, NY, USA: Oxford University Press, 2007.
- R. W. Boyd, Nonlinear Optics. San Diego, CA, USA: Academic Press, 2020.
- E. Hecht, Optics. New York, NY, USA: Pearson, 2017.
- G. P. Agrawal, Fiber-Optic Communication Systems.Hoboken, NJ, USA: Wiley, 2010.
https://doi.org/10.1002/9780470918524 - S. Kasap, Optoelectronics and Photonics: Principles and Practices. New York, NY, USA: Pearson, 2013.
- V. Ristic, Principles of Acoustic Devices. Hoboken, NJ, USA: Wiley, 1994.
- A. Yariv, Optical Electronics in Modern Communications. New York, NY, USA: Oxford University Press, 1997.
- M. Born and E. Wolf, Principles of Optics. Cambridge, U.K.: Cambridge University Press, 1999.
- A. Korpel, Acousto-Optics. New York, NY, USA: Marcel Dekker, 1988.
- M. J. Weber, Handbook of Optical Materials. Boca Raton, FL, USA: CRC Press, 1991.
- A. Ghatak and K. Thyagarajan, Optical Electronics. Cambridge, U.K.: Cambridge University Press, 2010.
- T. C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB. Amsterdam, Netherlands: Elsevier, 2001.
https://doi.org/10.1016/B978-008043788-0/50007-X - R. W. Dixon, "Acousto-optic devices and applications," Proc. IEEE, vol. 55, no. 10, pp. 1681– 1705, Oct. 1967.
- R. K. Chang, "Acousto-optic tunable filters," IEEE Trans. Sonics Ultrason., vol. 23, no. 1, pp. 2–6, Jan. 1976.
https://doi.org/10.1109/T-SU.1976.30835 - V. Ristic, Principles of Acoustic Devices. Hoboken, NJ, USA: Wiley, 1994.
- A. Ballato, "Piezoelectric materials for acoustic wave applications," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 32, no. 6, pp. 937–956, Nov. 1985.
- M. V. Klein and T. E. Furtak, Optics. Hoboken, NJ, USA: Wiley, 1986.
- K. Hinagawa, "Faraday and Kerr Effects in Ferromagnets," in Magneto-Optics, S. Sugano and N. Kojima, Eds. Berlin/Heidelberg, Germany: Springer, 2000, pp. 137–178.
https://doi.org/10.1007/978-3-662-04143-7_5 - V. Zayets and K. Ando, "Magneto-optical devices for optical integrated circuits," in Frontiers in Guided Wave Optics and Optoelectronics, 2010, p. 674.
https://doi.org/10.5772/39543 - T. Goto, R. Morimoto, J. W. Pritchard, M. Mina, H. Takagi, Y. Nakamura, et al., "Magneto-optical Qswitching using magnetic garnet film with micromagnetic domains," Opt. Express, vol. 24, no. 16, pp. 7635–17643, Aug. 2016.
https://doi.org/10.1364/OE.24.017635 - F. Z. Zhou, W. T. Hu, Y. M. Chen, Z. S. Li, L. Q. Shen, X. Q. Fen, et al., "Compact, magneto-optic Qswitched, neodymium-doped bismuth germinate crystal (Nd: BGO) laser pumped by a laser diode," Appl. Opt., vol. 34, no. 21, pp. 4266–4268, Jul. 1995.
https://doi.org/10.1364/AO.34.004266 - G. F. Dionne, Magnetic Oxides. Berlin, Germany:Springer, 2009.
https://doi.org/10.1007/978-1-4419-0054-8 - M. Shone, "The technology of YIG film growth," Circuits, Syste ms Signal Process., vol. 4, pp. 89–103, 1985.
https://doi.org/10.1007/BF01600074 - P. W. Jang and J. Y. Kim, "New growth method of solid phase epitaxy in sputtered YIG films," IEEE Trans. Magn., vol. 37, no. 4, pp. 2438–2440, Jul. 2001.
https://doi.org/10.1109/20.951196 - R. Morimoto, T. Goto, T. Taira, J. Pritchard, M. Mina, H. Takagi, et al., "Randomly polarised beam produced by magnetooptically Q-switched laser," Sci. Rep., vol. 7, no. 1, p. 15398, Nov. 2017.
https://doi.org/10.1038/s41598-017-15826-3