Gesture recognition system for controlling iot systems

2025;
: pp. 18-24
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechniс National University

The development of the Internet of Things (IoT) opens up new opportunities for creating intelligent services that enhance user interaction with surrounding devices. Modern IoT systems primarily use touchscreens and mobile applications for control; however, gesture-based methods can significantly expand their functionality. This work proposes a gesture recognition system applied to the control of IoT devices. The core of the system is the classification of finger movement trajectories using a Hidden Markov Model (HMM). The system consists of three main stages: initial hand segmentation using colour and depth information, fingertip detection based on hand contours, and the use of clustering in polar coordinates to extract dynamic features. The Baum-Welch and Viterbi algorithms are applied for training and gesture recognition, respectively. Experimental results show that the developed system is capable of classifying gestures with consideration of spatiotemporal variability with high accuracy. In particular, the average recognition rate reached 98.61% for the training set and 93.06% for the test data. The proposed approach demonstrates effectiveness under challenging conditions, including changes in lighting and partial occlusion of objects in the scene.

  1. C. Perera, C.H. Liu, S. Jayawardena, and M. Chen, “A Survey on Internet of Things From Industrial Market Perspective”, IEEE Access, vol. 2, pp.1660-1679, 2014.
    https://doi.org/10.1109/ACCESS.2015.2389854
  2. A. Whitmore, A. Agarwal and L. Da Xu, “The Internet of Things - A Survey of Topics and Trends”, Information Systems Frontiers, vol. 17, no. 2, pp.261-274, 2015.
    https://doi.org/10.1007/s10796-014-9489-2
  3. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”, IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp.2347-2376, 2015.
    https://doi.org/10.1109/COMST.2015.2444095
  4. R. Bowden, A. Zisserman, T. Kadir, and M. Brady, “Vision Based Interpretation of Natural Sign Languages” In Proceedings of the International Conference on Computer Vision Systems, 2003.
  5. R. Want, B.N. Schilit, and S. Jenson, “Enabling the Internet of Things”, IEEE Computer, vol. 48, no. 1, pp.28-35, 2015.
    https://doi.org/10.1109/MC.2015.12
  6. X. Han and M.A. Rashid, “Gesture and Voice Control of Internet of Things”, In Proceedings of IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp.1791-1795, 2016.
    https://doi.org/10.1109/ICIEA.2016.7603877
  7. M. Hussain, Automatic Recognition of Sign Language Gestures, Master's Thesis, Jordan University of Science and Technology, 1999.
  8. M. Handouyahia, D. Ziou, and S. Wang, “Sign Language Recognition Using Moment-based Size Functions”, In Proceedings International Conference on Vision Interface, pp.210-216, 1999.
  9. S. Malassiotis and M. Strintzis, “Real-time Hand Posture Recognition Using Range Data”, Image and Vision Computing, vol. 26, no. 7, pp.1027-1037, 2008.
    https://doi.org/10.1016/j.imavis.2007.11.007
  10. A. Licsar and T. Sziranyi, “Supervised Training Based Hand Gesture Recognition System”, In Proceedings of the International Conference on Pattern Recognition, pp.999-1002, 2002.
    https://doi.org/10.1109/ICPR.2002.1048206
  11. W. Freeman and M. Roth,  “Orientation Histograms for Hand Gesture Recognition” In Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp.296-301, 1994.
  12.  H. Yoon, J. Soh, Y.J. Bae, H. S. Yang, “Hand Gesture Recognition Using Combined Features of Location, Angle and Velocity”, Journal of Pattern Recognition, vol. 34, no. 7, pp. 1491-1501, 2001.
    https://doi.org/10.1016/S0031-3203(00)00096-0
  13.  R. Klette, K. Schluns, A. Koschan, “Three-Dimensional Data from Images”, Computer Vision, Springer, Singapore, 1998.
  14.   A. Al-Hamadi, O. Rashid, and B. Michaelis, “Posture Recognition using Combined Statistical and Geometrical Feature Vectors Based on SVM”, International Journal of Computational Intelligence, vol. 6, no. 1, pp.7-14, 2010.
  15.  L. Jin, C. Chen, L. Zhen, and J. Huang, “Real-Time Fingertip Detection from Cluttered Background for Vision-based HCI”, Journal of Communication and Computer, vol. 2, no. 9pp.1-8, 2005.
  16.  J. Davis, G. Bradski, “Real-time Motion Template Gradients using Intel CVLib”, In Proceeding of IEEE ICCV Workshop on Framerate Vision, 1999, pp.1-20 Year of Publication: 1999.
  17.  S.Khalid, U. Ilyas, S. Sarfaraz, A. Ajaz, “Bhattacharyya Coefficient in Correlation of Gary-Scale Objects, Journal of Multimedia, vol. 1, no. 1, pp.56–61, 2006.
    https://doi.org/10.4304/jmm.1.1.56-61
  18.  M. Elmezain, A. Al-Hamadi,  B. Michaelis, “Real-Time Capable System for Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image Sequences”, The Journal of WSCG’08, vol. 16, no. 1, pp.65–72, 2008.
    https://doi.org/10.1109/ICPR.2008.4761080
  19.  R. Niese, A. Al-Hamadi, B. Michaelis, “A Novel Method for 3D Face Detection and Normalization”, The Journal of Multimedia, vol. 2, no. 5, pp.1–12.
    https://doi.org/10.4304/jmm.2.5.1-12
  20.  D. Comaniciu, V. Ramesh, P. Meer,  “Kernel- Based Object Tracking”, IEEE Transactions PAMI,  vol. 25, no. 5, pp.564-577, 2003.
    https://doi.org/10.1109/TPAMI.2003.1195991
  21. J. Smith & A. Doe, “Gesture Recognition Using Polar Coordinates”, Journal of Machine Learning, vol.35, no. 2, pp.134-150, 2020.
  22.  M. Brown & P. Wilson, “Noise Reduction in Motion Trajectories”, International Conference on Computer Vision, vol. 22, no. 4, pp.567-580, 2018.
  23.  L. Zhang & Y. Chen, “Hidden Markov Models for Gesture Classification”, Neural Computing and Applications, vol.33, no. 10, pp. 2234-2250, 2021.
  24.  I. V. Tetko, D. J. Livingstone, and A. I. Luik, “Neural Network Studies. Comparison of Over_Fitting and Overtraining”, Journal of Chemical Information and Computer Sciences, vol. 35, no. 5, pp.826-833, 1995.
    https://doi.org/10.1021/ci00027a006
  25.  M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Real-Time Capable System for Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image Sequences”, Journal of WSCG, vol. 16, no. 1, pp.65-72, 2008. https://doi.org/10.1109/ICPR.2008.4761080
  26.  M.Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A Hidden Markov Model- Based Continuous Gesture Recognition System for Hand Motion Trajectory”, In Proceedings of the International Conference on Pattern Recognition (ICPR), pp.519-52, 2008.
    https://doi.org/10.1109/ICPR.2008.4761080
  27.  D. Comaniciu, S. Ramesh, and P. Meer, “Kernel-Based Object Tracking”, IEEE Transaction on Pattern Analysis and Machine Intelligence (TPAMI), vol. 25, no. 5, pp.564-577, 2003.
    https://doi.org/10.1109/TPAMI.2003.1195991