Magnetic metamaterials as perspective materials of radioelectronics

2012;
: pp. 85-92
1
M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
2
Technomash Central Research Technological Institute
3
Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
4
Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Electromagnetic properties of 3D-nanocom­posites based of the opal matrixes containing particles of one or two transitive metals are investigated. Phase analysis of the nanocomposites is carried out. Microwave measurements are executed in the frequency interval of 26-38 GHz. Field dependences of the factors of passage and reflexion are ob­tained. Spectra of a magnetic resonance and antiresonance are restored. Frequency dependences of an amplitude of the resonance and antiresonance are obtained. It is established, that in the nanocomposites containing particles of two transi­tive metals, the magnetic resonance amplitude is much larger than in the nanocomposites containing particles of one metal.

  1. Photonic glasses. [Edited by Fuxi Gan, Lei Xu]. – London, UK: Imperial College Press. – 2006. 460 p.
  2. A. Rinkevich, А. Burhanov, M. Samoylovich, A. Be­lya­nin, S. Klesheva, Е. Кuznetsov, 3D-Nanocomposite Metal-dielectric Materials based on Opal Matrices // Ros­siiskii khimicheskii zhurnal. – Vol. LVI, № 1-2. - 2012. –P. 26-35. (Russian)
  3. A. Efros, Jing Shi, S. Blair, M. DeLong, Z. Vardeny, Na­noscale Metallic Photonic Crystals: Fabrication, Physical Pro­perties, and Applications // In Proc. NSF Nanoscale Scien­ce and Engineering Grantees Conference. – Arlington, USA. – 2002.
  4. A. Kong, Electromagnetic Wave Interaction with Stratified Negative Isotropic Media // In Proc. Progress in Electromagnetics Research Symposium (PIERS). – Cambridge, USA. – Vol. 35. -2002. – P. 1-52.
  5. E. Ozbay, B. Temelkuran, M. Bayindir. Microwave Applications of Photonic Crystals // In Proc. Progress in Electromagnetics Research Symposium (PIERS). – Hawaii, USA. – Vol. 41. – 2003. – P. 185-209.
  6. M.G. Silveirinha, N. Engheta, Tunneling of Electro­magnetic Energy through Sub-Wavelength Channels and Bends Using Epsilon-Near-Zero (ENZ) Materials // Physical Review Letters. – Vol. 97. – 2006.
  7. B. Edwards, A. Alu, M. Young, M. Silveirinha, N. Engheta, Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide // Physical Review Letters. – Vol. 100. – 2008.
  8. M. Silveirinha, N. Engheta, Transporting an Image through a Subwavelength Hole // Physical Review Letters. – Vol. 100. – 2009.
  9. R. Ziolkowski, Propagation in and Scattering from a Matched Metamaterial Having a Zero Index of Refraction // Physical Review E 70. - № 4. – 2004. – P. 046608.
  10. V. Ustinov, A. Rinkevich, D. Perov, M. Sa­moylo­vich, S. Klesheva, Anomalous Magnetic Antireso­nance and Resonance in Ferrite Nanoparticles Embedded in Opal Matrix // Journal of Magnetism and Magnetic Materials. – Amsterdam, Netherlands: Elsevier. –Vol. 324. – 2012. – P. 78-82.
  11. A. Gurevich, G. Melkov, Magnetic Fluctuations and Waves. – Moscow, Russia: Fizmatlit. – 1994. – 464 p. (Russian)
  12. M. Samoylovich, A. Rinkevich, В. Bovtun, A. Bely­a­nin, D. Nuzhniy, M. Kempa, S. Klesheva, UHF – charac­te­ristics, Microwave Conductivity and Dielectric Properties of Nanocomposites on the Basis of Opal Matrixes with Filling Interspherical Nanocavity Metals // Nanoinzheneriya. Mos­cow, Russia: Mashinostroenie. – № 3 (9). – 2012. – P. 22-30. (Russian).
  13. A. Rinkevich, D. Perov, M. Samoilovich, S. Kles­heva, Magnetic Antiresonance in Metamaterial Ba­sed on Opal Matrix with Metallic Cobalt Nanoparticles Embedded // Metamaterials. – Amsterdam, Netherlands: Elsevier. – № 6. – 2013. – P. 27-36.