MECHANICAL PROPERTIES AND MICROSTRUCTURE OF CONCRETE INCORPORATING SYNTHETIC ZEOLITE

2024;
: 88-95
https://doi.org/10.23939/jtbp2024.02.088
Received: September 27, 2024
Revised: October 29, 2024
Accepted: November 01, 2024
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University, Department of Building Production
3
Lviv Polytechnic National University, Department of Building Production
4
Lublin University of Technology

The effect of natural and synthetic zeolite on the microstructure of cement matrix and mechanical properties of concretes was studied in the article. Results show that the addition of these pozzolanic materials results in the increase both compressive and flexural strength after 28 days of hardening. The concrete incorporating 10 mass.% of synthetic zeolite Na-P1 characterizes the highest compressive and flexural strength that reaches 53.5 and 7.8 MPa and exceeds the strength of reference concrete by 18 and 24%, respectively. This increase is the result of the improvement of the concrete on the microstructural level due to the formation of the additional amount of fibre-like crystals of hydrosilicates in the non-clinker part of the cement matrix providing its self-reinforcement.

Kryvenko, P., Rudenko, I., Sikora, P., Sanytsky, M., Konstantynovskyi, O., & Kropyvnytska, T. (2024). Alkali-activated cements as sustainable materials for repairing building construction: a review. Journal of Building Engineering, 109399. doi.org/10.1016/j.jobe.2024.109399
https://doi.org/10.1016/j.jobe.2024.109399
Kropyvnytska, T., Sanytsky, M., Heviuk, I., & Kripka, L. (2022). Study of the Properties of Low-Carbon Portland-Composite Cements CEM II/CM. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering (pp. 230-237). Cham: Springer International Publishing. doi.org/10.1007/978-3-031-14141-6_22
https://doi.org/10.1007/978-3-031-14141-6_22
Blikharskyy, Z., Sobol, K., Markiv, T., & Selejdak, J. (2021). Properties of concretes incorporating recycling waste and corrosion susceptibility of reinforcing steel bars. Materials, 14(10), 2638. doi.org/10.3390/ma14102638
https://doi.org/10.3390/ma14102638
Sanytsky, M., Kropyvnytska, T., & Ivashchyshyn, H. (2023). Sustainable modified pozzolanic supplementary cementitious materials based on natural zeolite, fly ash and silica fume. In IOP Conference Series: Earth and Environmental Science (Vol. 1254, No. 1, p. 012004). IOP Publishing. doi 10.1088/1755-1315/1254/1/012004
https://doi.org/10.1088/1755-1315/1254/1/012004
Grabias-Blicharz, E., Panek, R., Franus, M., & Franus, W. (2022). Mechanochemically assisted coal fly ash conversion into zeolite. Materials, 15(20), 7174. doi.org/10.3390/ma15207174
https://doi.org/10.3390/ma15207174
Wdowin, M., Franus, M., Panek, R., Badura, L., & Franus, W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217-1223. https://link.springer.com/article/10.1007/s10098-014-0719-6
https://doi.org/10.1007/s10098-014-0719-6
Scharff, H. Landfill reduction experience in The Netherlands. Waste Managment, 34, 2218-2224. https://doi.org/10.1016/j.wasman.2014.05.019
https://doi.org/10.1016/j.wasman.2014.05.019
Vaitkevičius, V., Vaičiukynienė, D., Kantautas, A., Kartovickis, A., & Rudžionis, Ž. (2015). Blended cements produced with synthetic zeolite made from industrial by-product. Materials Science, 21(1), 136-142. doi: 10.5755/j01.ms.21.1.5635
https://doi.org/10.5755/j01.ms.21.1.5635
Blikharskyy, Z., Markiv, T., Turba, Y., Hunyak, O., Blikharskyy, Y., & Selejdak, J. (2023). Mechanical and fracture properties of air-entrained frc containing zeolitic tuff. Applied Sciences, 13(16), 9164. doi.org/10.3390/app13169164
https://doi.org/10.3390/app13169164
Sanytsky, M., Usherov-Marshak, A., Kropyvnytska, T., & Heviuk, I. (2021). Performance of multicomponent Portland cements containing granulated blast furnace slag, zeolite, and limestone. Cement-Wapno-Beton= Cement Lime Concrete, 25(5), 416-427. doi.org/10.32047/CWB.2020.25.5.7
https://doi.org/10.32047/CWB.2020.25.5.7
Nagrockiene, D., & Girskas, G. (2016). Research into the properties of concrete modified with natural zeolite addition. Construction and Building Materials, 113, 964-969. doi: 10.1016/j.conbuildmat.2016.03.133
https://doi.org/10.1016/j.conbuildmat.2016.03.133
Shekarchi, M., Ahmadi, B., Azarhomayun, F., Shafei, B., & Kioumarsi, M. (2023). Natural zeolite as a supplementary cementitious material-A holistic review of main properties and applications. Construction and Building Materials, 409, 133766. doi.org/10.1016/j.conbuildmat.2023.133766
https://doi.org/10.1016/j.conbuildmat.2023.133766
Nas, M., & Kurbetci, S. (2018). Mechanical, durability and microstructure properties of concrete containing natural zeolite. Comput. Concr, 22(5), 449-459. doi:10.12989/cac.2018.22.5.449
Markiv, T., Sobol, K., Franus, M., & Franus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of civil and mechanical engineering, 16, 554-562. doi.org/10.1016/j.acme.2016.03.013
https://doi.org/10.1016/j.acme.2016.03.013
Sobol, K., Markiv, T., Terlyha, V., & Franus, W. (2015). Peculiarities of hydration processes of cements containing natural zeolite. Budownictwo i Architektura, 14(1), 105-113. doi:10.35784/bud-arch.1674
https://doi.org/10.35784/bud-arch.1674