ENVIRONMENTAL ASSESSMENT OF WET-HANDLED COAL BOTTOM ASH APPLICATION FOR CEMENT PRODUCTION

2025;
: 49-57
https://doi.org/10.23939/jtbp2025.01.049
Received: March 03, 2025
Revised: April 10, 2025
Accepted: May 02, 2025
1
Lviv Polytechnic National University, Department of Highways and Bridges
2
Lviv Polytechnic National University, Department of highways and bridges

The production of Portland cements with a reduced clinker content corresponds to the strategy of decarbonization of building materials, aimed at reducing the negative impact on the environment and climate changes. This direction of development of the cement industry requires the use of more mineral additives. The application of waste-derived materials as the main non-clinker component is promising. The advantage of using wet-handled coal bottom ash is its pozzolanic effect and high grindability, but the main disadvantage is increased moisture. The introduction of wet-handled coal bottom ash in the cement industry requires an integrated approach that covers aspects of technology, economics, and ecology. The article investigates the feasibility of using wet-handled coal bottom ash as an additive to binders in terms of environmental performance while ensuring the required strength indicators of Portland cement.

Cheng, D., Reiner, D.M., Yang, F., Cui, C., Meng, J., Shan, Y. … Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14, 8213. doi.org/10.1038/s41467-023-43660-x
https://doi.org/10.1038/s41467-023-43660-x
Sroda, В. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68-74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6
Niu, L., Wu, S., Andrew, R. M., Shao, Z., Wang, J., & Xi, F. (2024). Global and National CO2 Uptake by Cement Carbonation from 1928 to 2024 [preprint]. Earth System Science Data. doi.org/10.5194/essd-2024-437.
https://doi.org/10.5194/essd-2024-437
World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Available at www.iea.org/papers/2009/Cement_Roadmap.pdf.
Pamenter, S., & Myers, R. J. (2021). Decarbonizing the cementitious materials cycle: a whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. Journal of Industrial Ecology, 25, 359-376. doi.org/10.1111/jiec.13105
https://doi.org/10.1111/jiec.13105
Decarbonizing Cement and Concrete: A CO2 Roadmap for the German cement industry (2020). https://www.vdz-online.de/fileadmin/wissensportal/publikationen/zementin... Study_Decarbonising_Cement_and_Concrete_2020.pdf
Batog, M., Bakalarz, J., Synowiec, K., & Dziuk, D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66-73. (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff6... bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
Shah, I.H., Miller, S.A., Jiang, D., & Myers, R. J. (2022). Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nature Communications, 13, 5758. doi.org/10.1038/s41467-022-33289-7
https://doi.org/10.1038/s41467-022-33289-7
Scrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015.
https://doi.org/10.1016/j.cemconres.2018.03.015
Sanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007
https://doi.org/10.1051/e3sconf/202016606007
Ascensão, G., Farinini, E., Ferreira, V. M., & Leardi, R. (2024). Development of eco-efficient limestone calcined clay cement (LC3) mortars by a multi-step experimental design. Chemometrics and Intelligent Laboratory Systems, 253, 105195. doi.org/10.1016/j.chemolab.2024.105195.
https://doi.org/10.1016/j.chemolab.2024.105195
Sobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538-544. https://doi.org/10.23939/chcht14.04.538
https://doi.org/10.23939/chcht14.04.538
Hunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94-100. doi:10.1007/978-3-031-14141-6_10.
https://doi.org/10.1007/978-3-031-14141-6_10
Yevropeiska biznes asotsiatsiia. (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wp[1]content/uploads/2021/05/White_Paper_Slag-_in_roa...
Cheeratot, R., & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701-709. doi:10.1016/j.wasman.2004.02.003.
https://doi.org/10.1016/j.wasman.2004.02.003
Sobol, K., & Marushchak, R. (2024). Оpportunities of wet-handled coal bottom ash use in binding materials: а review. Theory and Building Practice, 7, 1, 17-24. doi.org/10.23939/jtbp2024.01.017
https://doi.org/10.23939/jtbp2024.01.017
Tirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S. -Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324.
Permatasari, R., Sodri, A., & Gustina, H.A. (2023). Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact: A Review. Journal Penelitian Pendidikan IPA, 9(9), 569-579. https://doi.org/10.29303/jppipa.v9i9.4504
https://doi.org/10.29303/jppipa.v9i9.4504
Sanytsky, M. A., Kropyvnytska, T. P., & Hevyuk, I. M. (2021). Rapid-hardening clinker-efficient cements and concretes. Lviv: Prostir-M (in Ukrainian).
Ondova, M., & Stevulova, N. (2013). Environmental assessment of fly ash concrete. Chemical Engineering  Transactions, 35, 841-846.  DOI:10.3303/CET1335140.
Tait, M. W., & Wai, M. C. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Life cycle sustainability assessment, 21, 847-860. doi 10.1007/s11367-016-1045-5
https://doi.org/10.1007/s11367-016-1045-5
Bribián, I.Z., Capilla A.V., & Usón, A.A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002
https://doi.org/10.1016/j.buildenv.2010.12.002
Schorcht, F., Kourti, I., Scalet, B. M., Roudier, S., & Sancho L. D. (2013). Best Available Techniques (BAT) Cement and Lime Reference Document for the Production of Cement, Lime and Magnesium Oxide Luxembourg: Publications Office of the European Union. doi:10.2788/12850 https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/CLM_Publishe...
Locher F.-M. (2006). Cement - principles of production and use. Dusseldorf: Verlag Bau+Technic GmbH
Holderbank Engineering Book (2000). Holderbank Management & Consulting
Atmaca, A., & Atmaca, N. (2016). Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(1), 209-219. https://doi.org/10.18038/btda.11251.
https://doi.org/10.18038/btda.11251
Guidance Document on CBAM Implementation for installation operators outside the EU. (2023). https://taxation-customs.ec.europa.eu/document/download/2980287c-dca2-4a...
Greenhouse gas emission factors and net calorific values (NCVs) of fuels per unit mass used in the "National Inventory of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases in Ukraine for 1990-2021" (for monitoring in 2024). (2023). https://mepr.gov.ua/diyalnist/napryamky/zmina-klimatu/monitoryng-zvitnis...
Energy profiles. Ukraine / Irena International Renewable Agency. (2024). https://www.irena.org/-/media/Files/IRENA/Agency/Statistics/statistical_...
Hammond, G., & Jones, C. (2011). Embodied carbon: the inventory of carbon and energy (ICE). BSRIA: Bracknell.