3-methacryloxypropyltrimethoxysilane

Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method

Proton conductive organic-inorganic membranes were synthesized based on acrylic monomers and silica inorganic component, derived as a result of sol-gel transformation of precursor – 3-methacryloxypropyltrimethoxysilane (MAPTMS). Kinetics of polymerization in situ was investigated by laser interferometry. Membranes characterization includes water and methanol uptake, contact angle and proton conductivity at different temperatures. Activation energy values for proton conductivity in prepared membranes were evaluated.

INVESTIGATION OF VISCOSITY OF SOL-GEL SYSTEMS BASED ON 3-METHACRYLOXYPROPYLTRIMETHOXYSILANE AND TETRAETHOXYSILANE

One of the promising directions for production of advanced materials is creation of hybrid organic-inorganic nanocomposites that demonstrate not only the improved properties of organic matrix, but also the emergence of the new specific properties due to the presence of inorganic component. Hybrid organic-inorganic materials can be synthesized by sol-gel method as a result of sol-gel process involving organic-inorganic precursors. Nowadays sol-gel technique is considered as a simple and an ecologically friendly method of nanocomposite syntheses.