аналіз даних

EVALUATION OF MULTIMODAL DATA SYNCHRONIZATION TOOLS

The constant growth of data volumes requires the development of effective methods for managing, processing, and storing information. Additionally, it is advisable to apply multimodal approaches for knowledge aggregation to extract additional knowledge. Usually, the problem of efficient processing of multimodal data is associated with high-quality data preprocessing. One of the most critical preprocessing steps is synchronizing multimodal data streams to analyze complex interactions in different data types.

Computer Modelling of Logistic Regression for Binary Classification

This article discusses the practical aspects of applying logistic regression for binary data classification. Logistic regression determines the probability of an object belonging to one of two classes. This probability is calculated with the help of a sigmoid function, the argument of which is a linear convolution of the feature vector of the object with the weighting coefficients obtained during the minimization of the logarithmic loss function. Predicted class labels are determined by comparing the calculated probability with a given threshold value.

Big Data Technology Usage in Electric Transportation Industry

In the context of critical challenges related to global warming and the necessity of reducing carbon footprint, the electric car sector is experiencing significant growth. This progress inevitably leads to the need for expansion and modernization of the charging station infrastructure. This article conducts a detailed analysis of how big data processing technologies can contribute to the optimization of this infrastructure’s use, the efficiency of charging stations, and the development of personalized services for electric vehicle users.

Mathematical Model of Logistic Regression for Binary Classification. Part 2. Data Preparation, Learning and Testing Processes

This article reviews the theoretical aspects of logistic regression for binary data classification, including data preparation processes, training, testing, and model evaluation metrics.

Requirements for input data sets are formulated, methods of coding categorical data are described, methods of scaling input features are defined and substantiated.

Mathematical Model of Logistic Regression for Binary Classification. Part 1. Regression Models of Data Generalization

In this article, the mathematical justification of logistic regression as an effective and simple to implement method of machine learning is performed.

A review of literary sources was conducted in the direction of statistical processing, analysis and classification of data using the logistic regression method, which confirmed the popularity of this method in various subject areas.

METHODS OF MACHINE LEARNING IN MODERN METROLOGY

In the modern world of scientific and technological progress, the requirements for the accuracy and reliability of measurements are becoming increasingly stringent. The rapid development of machine learning (ML) methods opens up perspectives for improving metrological processes and enhancing the quality of measurements. This article explores the potential application of ML methods in metrology, outlining the main types of ML models in automatic instrument calibration, analysis, and prediction of data.

Features of Recommendation Algorithm on Base of Analysis of Social Network Data Mining Methods

In recent years, social media platforms have become powerful data collection tools to improve user experience. The vast amount of data generated through social media provides a unique opportunity to develop innovative recommendation systems. This article analyzes the application of data mining methods for social networks in the context of effective recommendation systems, focusing on three key methodologies: sentiment analysis (SA), topic modeling (TM) and social network analysis (SNA), highlighting their positive features.

MEASUREMENT AND ANALYSIS OF AGRICULTURAL FIELD STATE USING CLOUD-BASED DATA PROCESSING PIPELINE

The increasing demand for precision agriculture has prompted the integration of advanced technologies to optimize agricultural practices. This article presents an approach to agricultural field data processing using a cloud-based data pipeline. The system leverages data from various sensors deployed in the fields to collect real-time information on key parameters such as soil moisture, temperature, humidity, etc. The collected data is transmitted to the cloud where it undergoes a series of data processing and analysis stages.

Intelligent system for analyzing battery charge consumption processes

The article develops an intelligent system of analysis and neural network forecasting of battery charge consumption for automated vehicles (AGVs). For this purpose, the types of AGV and the methods of effective forecasting of their battery charge consumption were analyzed. It is established that they are based on optimal robot control processes; application of technologies to increase capacity and extend service life.

System for Effective Small Business Support

This paper considers the problem of developing specialized software designed to support small businesses. It substantiates the relevance of creating such systems; architecture has been offered; and the results of development have been given. For practical use, a specific subject area has been considered, which allows to clearly understand the purpose and outcome of the work. These materials can be used to obtain ready-made solutions during the development of a software package on this topic.