Anisotropic parabolic problem with variable exponent and regular data
In this paper, we study the existence of weak solutions for a class of nonlinear parabolic equations with regular data in the setting of variable exponent Sobolev spaces. We prove a "version" of a weak Lebesgue space estimate that goes back to "Lions J. L. Quelques méthodes de résolution des problèmes aux limites. Dunod, Paris (1969)" for parabolic equations with anisotropic constant exponents ($p_i(\cdot)=p_i$).