Keras

IMAGE QUALITY ASSESSMENT BY CONVOLUTIONAL NEURAL NETWORK USING THE TID2013 DATABASE

The article is devoted to the problem of automatic image quality assessment by a convolutional neural network when using the common TID2013 image database for training the neural network. The TID2013 database was chosen for the reason that it contains 25 base real-world images, which were distorted from these images using 24 different distortion methods and with 5 distortion levels, creating a sufficiently large database of 3000 images for training the neural network. For each image, an average expert assessment of its quality is given.

Software Implementation of the Algorithm for Recognizing Protective Elements on The Face

The quarantine restrictions introduced during COVID-19 are necessary to minimize the spread of coronavirus disease. These measures include a fixed number of people in the room, social distance, wearing protective equipment. These restrictions are achieved by the work of technological control workers and the police. However, people are not ideal creatures, quite often the human factor makes its adjustments.