natural language processing (NLP)

Mathematical modeling of multi-label classification of job descriptions using transformer-based neural networks

This article presents the mathematical modeling of the multi-label classification task of job description texts aimed at the automatic detection of working conditions and social benefits, which can enhance communication efficiency between employers and job seekers.  The proposed approach is based on the use of the transformer-based BERT neural network, pre-trained on a multilingual corpus.  The dataset was constructed by collecting job postings from the three largest Ukrainian job search platforms: Work.ua, Robota.ua, and Jooble.org.  The collected texts were augmented

Information Technologies for Solving the Problem of Correcting Errors in Ukrainian-language Texts

This article is dedicated to the study and analysis of grammatical error correction (GEC) tasks in Ukrainian language texts, which is a significant issue in the field of natural language processing (NLP). The paper addresses the specific challenges faced by automatic error correction systems due to the peculiarities of the Ukrainian language, such as its morphological complexity and contextuality. Examples of typical errors are provided, and the reasons why existing GEC methods often prove insufficient for Ukrainian are analysed.