пошук зображень на основі вмісту

Numerical Optimization Method for Clustering in Content-Based Image Retrieval Systems

The object of the study is the process of organizing a descriptor repository in content-based image retrieval systems. The subject of the study is a method of numerical optimization of descriptor clustering in a multidimensional space. The aim of this work is to develop a clustering optimization method in the Multidimensional Cube model to improve search efficiency. The core idea is to ensure a more uniform distribution of descriptors across clusters by adjusting interval boundaries in each dimension, which reduces imbalance in cluster density and improves retrieval performance.

Image Searching System

Finding similar images on a visual sample is a difficult AI task, to solve which many works are devoted. The problem is to determine the essential properties of images of low and higher semantic level. Based on them, a vector of features is built, which will be used in the future to compare pairs of images. Each pair always includes an image from the collection and a sample image that the user is looking for. The result of the comparison is a quantity called the visual relativity of the images. Image properties are called features and are evaluated by calculation algorithms.