Intelligent driver assistance systems based on computer vision and deep learning
This article presents an integrated Advanced Driver Assistance System (ADAS) that combines several key functional modules, such as collision warning, lane detection, traffic sign recognition, and pothole detection, which are implemented using modern deep learning models, particularly YOLOv8n. The system is optimized for devices with limited computational resources, such as Raspberry Pi or NVIDIA Jetson Nano, by employing a modular architecture and parallel data processing to ensure realtime performance.