рівновага Неша

Architecture and Formal-mathematical Justification of Generative Adversarial Networks

The purpose of the work is to analyze the features of generative adversarial networks. The object of research is the process of machine learning algorithmization. The subject of the research is mathematical methods used in the generation of semantically related text. This article explores the architecture and mathematical justification of such a type of generative models as generative adversarial networks. Generative adversarial networks are a powerful tool in the field of artificial intelligence, capable of generating realistic data, including photos, videos, sounds, etc.