solar energy forecasting

Forecasting solar energy generation using deep learning models

The application of deep learning models for forecasting solar energy generation is considered.  An analysis and comparison of the efficiency of recurrent (LSTM, GRU), convolutional (CNN), and temporal convolutional networks (TCN) for forecasting time series of solar energy generation were conducted.  The possibility of improving forecasting accuracy by constructing a hybrid model combining ARIMA and CNN was explored.  The results of experiments for different EU countries are presented, and a comparison of models in terms of forecasting accuracy and computational efficiency is performed as w

A METHOD FOR FORECASTING THE ENERGY GENERATION OF A SOLAR POWER PLANT

The successful deployment of solar energy systems necessitates accurate forecasting of electricity production by photovoltaic power stations (PPS) to ensure the stable operation of power supply networks. This requirement stems from the need to maintain a real-time balance between electricity generation and consumption, which is achieved through the implementation of complex hierarchical control systems governing available energy sources.