utoregressive model

DEVELOPMENT OF SOFTWARE AND ALGORITHMIC EQUIPMENT FOR PREDICTION OF RIVER WATER POLLUTION USING FRACTAL ANALYSIS METHODS

This paper explores the application of the ARFIMA fractal model for prediction of the dynamics of river water pollution based on BOD measure. The study begins by conducting a review of related works in the field of water quality analysis. At this stage also a suitable dataset is selected, that is used to train the ARFIMA, one of the machine learning models. GPH semi-parametric algorithm is applied for estimating the fractal differentiation parameter of the ARFIMA.