виявлення об'єктів на відеозображенні

Exponential Data Augmentation Methods for Improving Yolo Performance in Computer Vision Tasks

The article examines data augmentation methods in the task of image recognition, specifically introducing the exponential augmentation approach to enhance the performance of deep neural networks, particularly YOLO, in object detection tasks. The proposed methodology is based on the sequential and repeated application of various transformations, including horizontal and vertical flipping, 90° rotation, Gaussian Blur, brightness and contrast adjustment.

PREVENTING POTENTIAL ROBBERY CRIMES USING DEEP LEARNING ALGORITHM OF DATA PROCESSING

Recently, deep learning technologies, namely Neural Networks [1], are attracting more and more attention from businesses and the scientific community, as they help optimize processes and find real solutions to problems much more efficiently and economically than many other approaches. In particular, Neural Networks are well suited for situations when you need to detect objects or look for similar patterns in videos and images, making them relevant in the field of information and measurement technologies in mechatronics and robotics.