weighted least squares

Estimation in short-panel data models with bilinear errors

Many estimation methods have been proposed for the parameters of the regression models with serially correlated errors.  In this work, we develop an asymptotic theory for estimation in the short panel data models with bilinear error.  We propose a comparative study by simulation between several estimators (adaptive, ordinary and weighted least squares) for the coefficients of panel data models when the errors are bilinear serially correlated.  As a consequence of the uniform local asymptotic normality property, we obtain adaptive estimates of the parameters.  Finally, w