zinc selenide

Mathematical calculation of the boundary conditions for zinc sulfide-selenide formation in the hydroxide-hydrazine-thiourea-selenium system

Based on thermodynamic constants, the concentration limits of the initial zinc-containing salt and the range of pH values at which the depositions of ZnS and ZnSe without Zn(OH)2 are possible were calculated. The boundary conditions of the formation of the ZnSxSe1–x solid solution in the hydroxide-hydrazine-thiourea-selenium system were defined by the overlap area between the constructed ZnS and ZnSe formation zones. The task of complex intermolecular interaction between complexed zinc ions and two chalcogenizers in the working solution was solved on the basis of mathematical calculations.

Quantum-chemical modeling of the chemistry process of the zinc sulfide and zinc selenide films synthesis

The quantum-chemical modeling of the synthesis process chemistry of ZnS and ZnSe in aqueos solutions was carried out.For modeling the simulation of ZnS synthesis was made through the formation of Zn(II) complex forms with the trisodium citrate, sodium hydroxide and the pair of ammonium hydroxide with hydrazine hydrate. For the synthesis of ZnSe was used only sodium hydroxide.It was established that this process passes through several intermediate stages with the transitional reactive complexes formation.

SYNTHESIS OF ZINC SULFIDE AND ZINC SELENIDE SEMICONDUCTOR THIN FILMS. REVIEW

The zinc sulfide (ZnS) and zinc selenide (ZnSe) films of belongs to the AIIBVI group of semiconductors type, which are the main part of photosensitive elements of electronic devices. An analytical review of the scientific and technical literature shows that in recent years intensive research has been conducted to replace toxic cadmium-containing films with non-toxic counterparts, while maintaining the effectiveness of photovoltaic elements. The ZnS and ZnSe films are the most promising for this replacement.