Interparticle interactions, general relativity effects, and critical parameters of white dwarfs

: pp. 264-283
Received: December 01, 2014

Math. Model. Comput. Vol. 1, No. 2, pp. 264-283 (2014)

Ivan Franko National University of Lviv
Ivan Franko National University of Lviv
Ivan Franko National University of Lviv

Two methods of mass calculation of degenerate dwarfs were considered: based on (1) hydrostatic equilibrium equation as well as (2) variational principle. In this work we used model with ideal electron subsystem and one with Coulomb interaction. An instability region of massive white dwarfs was explored. For the first time, taking into account the Coulomb interaction, there were obtained critical values of mass and relativistic parameter at wich instability due to general relativity effects occured.

  1. Adams W. S. The Spectrum of the Companion of Sirius. PASP. 27, 236–237 (1915).
  2. Boss L. Preliminary General Catalogue of 6188 stars for the eopoch 1900. Washington, D.C.: Carnegie Institution (1910).
  3. Fowler R. H. On dense matter. MNRAS. 87, 114 (1926).
  4. Chandrasekhar S. The Maximum Mass of Ideal White Dwarfs. Astrophys. J. 74, 81 (1931).
  5. Chandrasekhar S. Stellar configurations with degenerate cores. MNRAS. 95, 676 (1935).
  6. Vavrukh M. V., Smerechinskii S. V. A Finite Temperature Chandrasekhar Model: Determining the Parameters and Computing the Characteristics of Degenerate Dwarfs. Astronomy Reports. 56, n.5, 363 (2012).
  7. Vavrukh M. V., Smerechinskii S. V. Hot Degenerate Dwarfs in a Two-Phase Model. Astronomy Reports. 57, n.2, 913 (2013).
  8. Vavrukh M. V. Three-phase model in the theory of degenerate dwarfs. Bulletin of the Lviv University. Series Physics. 48 (2013).
  9. Hamada T. Salpeter E. E. Models for Zero-Temperature Stars. Astrophys. J. 134, 683 (1961).
  10. Zeldovich Ya. B., Novikov I. D. Relativistic astrophysics. Moskva: Nauka(1967).
  11. Kaplan S. A. Superdense stars. Scientific notes of the Lviv State Ivan Franko University. Series Mathematics. 4, 109 (1949).
  12. Vavrukh M., Krohmalskii T. Reference System Approach in the Electron Theory. 1. General Relations. Phys. stat. sol. (b). 168, 519 (1991).
  13. Vavrukh M., Krohmalskii T. Reference System Approach in the Electron Theory. 2. Ground state characteristic in the Medium Density Region. Phys. stat. sol. (b). 169, 451 (1992).
  14. Vavrukh M. V. A generalization of the concept of the local field in the theory of fermi-liquids. FNT. 22, 9 (1996).
  15. Salpeter E. E. Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669 (1961).
  16. Shapiro S. L. Teukolsky S. A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983).
  17. Lloyd P., Sholl C. A structural expansion of the cohesive energy of simple metals in the effective Hamiltonian appoximation. J. Phys. C. 1, 1620 (1969).
  18. Brovman E., Kagan Yu. On the peculiarities to many-ring diagrams for fermi-systems. Zh. Exp. Teor. Fiz. 63, 1937 (1972).
  19. Gell-Mann M., Brueckner K. Correction energy of an electron gas at high density. Phys. Rev. 106, 364 (1957).
  20. Vavrukh M. V., Tyshko N. L. Correlation functions of relativistic degenerate ideal fermi-systems in the long-wave approximation. Bulletin of the Lviv University. 34, 3 (2001).
  21. Ceperley D., Alder B. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).
  22. Vosko S. H., Wilk L., Nusair N. Accurate spin-depent electron-liquid correlation energies for local spin density calculations. A critical analisis. Can. J. Phys. 58, 1200 (1980).