An epidemic model with viral mutations and vaccine interventions

2023;
: pp. 311–325
https://doi.org/10.23939/mmc2023.02.311
Received: August 14, 2022
Revised: January 30, 2023
Accepted: February 01, 2023

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 311–325 (2023)

1
Department of Mathematics, Faculty of Applied Science and Technology, Ahmad Dahlan University, Yogyakarta, Indonesia
2
Department of Mathematics, Faculty of Applied Science and Technology, Ahmad Dahlan University, Yogyakarta, Indonesia
3
Department of Mathematics Educations, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta, Indonesia
4
Department of Mathematics, Faculty of Applied Science and Technology, Ahmad Dahlan University, Yogyakarta, Indonesia
5
Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

In this paper, we introduce a two-strain SIR epidemic model with viral mutation and vaccine administration.  We discuss and analyze the existence and stability of equilibrium points.  This model has three types of equilibrium points, namely disease-free equilibrium, dominance equilibrium point of strain two, and coexistence endemic equilibrium point.  The local stability of the dominance equilibrium point of strain two and coexistence endemic equilibrium point are verified by using the Routh--Hurwitz criteria, while for the global stability of the dominance equilibrium point of strain two, we used a suitable Lyapunov function.  We also carried out the bifurcation analysis using the application of center manifold theory, and we obtained that the system near the disease-free equilibrium point always has supercritical bifurcation. Finally, the numerical simulations are provided to validate the theoretical results.  Continuation of the supercritical bifurcation point results in two Hopf bifurcations indicating a local birth of chaos and quasi-periodicity.

  1. Lemos-Paião A. P., Silva C. J., Torres D. F. M.  An epidemic model for cholera with optimal control treatment.  Journal of Computational and Applied Mathematics.  318, 168–180 (2017).
  2. Berhe H. W.  Optimal control strategies and cost eectiveness analysis applied to real data of cholera outbreak in Ethiopia's Oromia Region.  Chaos, Solitons & Fractals.  138, 109933 (2020).
  3. Abidemi A., Aziz N. A. B.  Optimal control strategies for dengue fever spread in Johor, Malaysia. Computer Methods and Programs in Biomedicine.  196, 105585 (2020).
  4. Huo H. F., Jing S. L., Wang X. Y., Xian H.  Modeling and analysis of H1N1 model with relapse and effect of twitter.  Physica A.  560, 125136 (2020).
  5. Baba I., Abdulkadir R., Esmaili P.  Analysis of tuberculosis model with saturated incidence rate and optimal control.  Physica A.  540, 123237 (2020).
  6. Kuddus M. A., Meehan M. T., White L. J., McBryde E. S., Adekule A. I.  Modeling drug resistanct tuberculosis amplication rates and intervention strategies in Bangladesh.  PLoS ONE. 15 (7),  e0236112 (2020).
  7. Zhoua L., Wang Y., Xiao Y., Michael Y. L.  Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies.  Mathematical Biosciences.  308, 27–37 (2019).
  8. Al-Darabsah I.  A time-delayed SVEIR model for imperfect vaccine with a generalized nonmonotone incidence and application to measles.  Applied Mathematical Modelling.  91, 74–92 (2021).
  9. Sadki M., Harroudi S., Allali K.  Dynamical analysis of an HCV model with cell-to-cell transmission and cure rate in the presence of adaptive immunity.  Mathematical Modeling and Computing.  9 (3), 579–593 (2022).
  10. El Youssofi L., Kouidere A., Kada D., Balatif O., Daouia A., Rachik M.  On stability analysis study and strategies for optimal control of a mathematical model of hepatitis HCV with the latent state.  Mathematical Modeling and Computing.  10 (1), 101–118 (2023).
  11. Kumar A., Srivastava P. K., Dong Y., Takeuchi Y.  Optimal control of infectious diseases: Information induced vaccination and limited treatment.  Physica A.  542, 123196 (2020).
  12. Ndii M. Z., Mage A. R., Messakh J. J., Djahi B. S.  Optimal vaccination strategy for dengue transmission in Kupang city, Indonesia.  Heliyon.  6 (11), e05345 (2020).
  13. Zhang Z., Kundu S., Tripathi J. P., Bugalia S.  Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays.  Chaos, Solitons & Fractals.  131, 109483 (2020).
  14. Ullah S., Khan M. A.  Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study.  Chaos, Solitons & Fractals.  139,  110075 (2020).
  15. Nenchev V.  Optimal quarantine control of an infectious outbreak.  Chaos, Solitons & Fractals.  138, 110139 (2020).
  16. Pawar D. D., Patil W. D., Raut D. K.  Fractional-order mathematical model for analysing impact of quarantine on transmission of COVID-19 in India.  Mathematical Modeling and Computing.  8 (2), 253–266 (2021).
  17. WHO. COVID-19. http://covid19.who.int/.
  18. Huo Y., Chiba S., Halfmann P., et al.  SARS-COV-2 D614G variant exhibits ecient replication ex vivo and transmission in vivo.  Science.  370 (6523), 1464–1468 (2020).
  19. Hashim H. O., Mohammed M. K., Mousa M. J., Abdulameer H. H., Alhassnawi A. T. S., Hassan S. A., Al-Shuhaib M. B. S.  Infection with different strains of SARS-CoV-2 in patients with COVID-19.  Archives of Biological Sciences.  72 (4), 575–585 (2020).
  20. Gashirai T. B., Musekwa-Hove S. D., Lolika P. O., et al.  Global stability and optimal control analysis of a food-and-mouth disease model with vaccine failure and environmental transmission.  Chaos, Solitons & Fractals.  132, 109568 (2020).
  21. Crokidakis N.  COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social distancing really work?  Chaos, Soliton & Fractals.  136, 109930 (2020).
  22. Alrashede S., Min-Allah N., Saxena A., Ali I., Mehmood R.  Impact of lockdowns on the spread of COVID-19 in Saudi Arabia.  Informatics in Medicine Unlocked.  20, 100420 (2020).
  23. Adi Y. A., Ndii M. Z.  Modeling and prediction of COVID-19 with a large scale social distancing.  Jurnal Fourier.  9 (1), 1–9 (2020).
  24. Ndii M. Z., Adi Y. A.  Modelling the transmission dynamics of COVID-19 under limited resources.  Communications in Mathematical Biology and Neuroscience.  2020, 62 (2020).
  25. Ilnytskyi J. M.  Modeling of the COVID-19 pandemic in the limit of no acquired immunity.  Mathematical Modeling and Computing.  8 (2), 282–303 (2021).
  26. Sharov K. S.  Creating and applying SIR modied compartmental model for calculation of COVID-19 lockdown efficiency.  Chaos, Solitons & Fractals.  141, 110295 (2020).
  27. Parino F., Zino L., Porri M., Rizzo A.  Modeling and prediction the effect of social distancing and travel restrictions on COVID-19 spreading.  Journal of The Royal Society Interface.  18 (175), 20200875 (2020).
  28. Libote G. B., Lobato F. S., Plat G. M., Neto A. J. S.  Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment.  Computer Methods and Programs in Biomedicine.  196, 105664 (2020).
  29. Jadidi M., Jamshidiha S., Masroori I., Moslemi P., Mohammadi A., Pourahmadi V.  A two-step vaccination technique to limit COVID-19 spread using mobile data.  Sustainable Cities and Society.  70, 102886 (2021).
  30. Chaturvedi D., Chakravarty R.  Predictive analysis of COVID-19 eradication with vaccination in India, Brazil, and U.S.A.  Infection, Genetics and Evolution.  92, 104834 (2021).
  31. Deng J., Tang S., Shu H.  Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19.  Journal of Theoretical Biology.  523, 110698 (2021).
  32. Hale J.  Ordinary Dierential Equations.  Wiley, New York (1969).
  33. Kuddus M. A., McBryde E. S., Adekunle A. I., White L. J., Meehan M. T.  Mathematical analysis of two-strain disease model with amplication.  Chaos, Solitons & Fractals.  143, 110594 (2021).
  34. Chastillo–Chavez C., Song B.  Dynamical models of tuberculosis and their applications.  Mathematical Biosciences and Engineering.  1 (2), 361–404 (2004).
  35. Kuznetsov Y. A.  Elements of Applied Bifurcation Theory.  Springer–Verlag, New York (1998).
  36. Braaksma B. L. J., Broer H. W.  Quasi-periodic flow near a codimension one singularity of a divergence free vector fileld in dimension four.  In: Bifurcation, théorie ergodique et applications, 22–26 juin 1981, Astérisque, no. 98–99, 74–142 (1982).