Model of money income diffusion in the European integration context

2023;
: pp. 583–592
https://doi.org/10.23939/mmc2023.02.583
Received: October 10, 2022
Revised: April 11, 2023
Accepted: April 25, 2023

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 583–592 (2023)

1
Vasyl Stefanyk Precarpathian National University
2
Vasyl Stefanyk Precarpathian National University
3
University of Lodz

A model of money income diffusion is constructed taking into account the processes of social comparison and the development of the income formation spatial structure.  To implement such model, the analytical theory of continued fractions is used and the corresponding differential equation solution is found in the form of a formal functional continued fraction.  The values of the approach fractions of a continuous fraction describing the dynamics of changes in the level of money income give an approximation of the real values with almost predetermined, arbitrarily high accuracy.  This allowed us to qualitatively describe the general dynamics of the money income diffusion process.

  1. Aghion P., Caroli E., Garcia–Penalosa C.  Inequality and Economic Growth: The Perspective of the New Growth Theories.  Journal of Economic Literature.  37 (4), 1615–1660 (1999).
  2. Champernowne D. G., Cowell F. A.  Economic Inequality and Income Distribution.  Cambridge University Press (1998).
  3. Allanson P.  Income stratification and between-group inequality.  Economics Letters.  124 (2), 227–230 (2014).
  4. Azzoni C. R.  Economic growth and regional income inequality in Brazil.  The Annals of Regional Science.  35, 133–152 (2001).
  5. Bouvet F.  EMU and the dynamics of regional per capita income inequality in Europe.  The Journal of Economic Inequality.  8, 323–344 (2010).
  6. Fischer M. M.,  Stirböck C.  Pan-European regional income growth and club-convergence insights from a spatial econometric perspective.  The Annals of Regional Science.  40, 693–721  (2006).
  7. Mookherjee D.,  Shorrocks A. F.  A decomposition analysis of the trend in UK income inequality.  The Economic Journal.  92 (368), 886–902 (1982).
  8. Ozhamaratli F., Kito O., Barucca P.  A generative model for age and income distribution.  EPJ Data Science.  11, 4 (2022).
  9. Dmytryshyn L. I.  Conceptual approach to modelling of spatial-structural differentiation of population's money incomes.  Actual Problems of Economics.  6, 114–122 (2013).
  10. Banerjeea A., Yakovenko V. M., Di Matteo T.  A study of the personal income distribution in Australia.  Physica A.  370 (1), 54–59 (2006).
  11. Chakrabarti B. K., Chakraborti A., Chatterjee A.  Econophysics and Sociophysics: Trends and Perspectives.  Wiley-VCH (2006).
  12. Rogers E. M.  Diffusion of Innovations.  Free Press (1983).
  13. Lorentzen L., Waadeland H.  Continued Fraction with Applications.  North Holland (1992).
  14. Jones W. B., Thron W. J.  Continued Fractions: Analytic Theory and Applications.  Addison-Wesley Pub. Co. (1980).
  15. Cooper S. C.  $\delta$-Fraction Solutions to Riccati Equations.  Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (1989).
  16. https://ec.europa.eu/eurostat/.
  17. https://www.ukrstat.gov.ua/.
  18. Antonova T., Dmytryshyn R., Kravtsiv V.  Branched continued fraction expansions of Horn's hypergeometric function $H_3$ ratios.  Mathematics.  9 (2), 148 (2021).
  19. Antonova T., Dmytryshyn R., Sharyn S.  Generalized hypergeometric function ${}_3F_2$ ratios and branched continued fraction expansions.  Axioms.  10 (4), 310 (2021).
  20. Dmytryshyn R. I.  Convergence of multidimensional $A$- and $J$-fractions with independent variables.  Computational Methods and Function Theory.  22, 229–242 (2022).
  21. Dmytryshyn R. I., Sharyn S. V.  Approximation of functions of several variables by multidimensional $S$-fractions with independent variables.  Carpathian Mathematical Publications.  13 (3), 592–607 (2021).