A numerical evaluation of the temperature of a solidification point in ingot casting processes

: pp. 410–420
Received: June 17, 2022
Accepted: April 18, 2023

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 410–420 (2023)

Universidad Nacional de Barranca, Barranca, 15169, Lima, Peru

An analysis for the numerical computing of the temperature around a solidification point of liquid steel or melt contained in a mould is performed via the interaction of the conservation equations of mass, momentum and heat transfer.  A cooling process of liquid steel due to the extraction of heat through the walls of the mould is analyzed using asymptotic methods and an ordinary differential equation that describes the temperature of interface melt-air is obtained.  Also, the temperature of the melt in the mould around the solidification point is computed numerically using the OpenFOAM software.

  1. Vynnycky M., Zambrano M., Cuminato J. A.  On the avoidance of ripple-marks on cast metal surfaces.  International Journal of Heat and Mass Transfer.  86, 43–54 (2015).
  2. Wray P. J.  Geometric features of chill-cast surfaces.  Metallurgical Transactions B.  12, 167–176 (1981).
  3. Tomono H., Kurz W., Heinemann W.  The liquid steel meniscus in molds and its relevance to the surface quality of casting.  Metallurgical Transactions B.  12, 409–411 (1981).
  4. Jacobi H., Schwerdfeger K.  Ripple marks on cast steel surfaces.  ISIJ International.  53 (7), 1180–1196 (2013).
  5. Fredriksson H., Elfsberg J.  Thoughts about the initial solidification process during continuous casting of steel.  Scandinavian Journal of Metallurgy.  31 (5), 292–297 (2002).
  6. Takeuchi E., Brimacombe J. K.  The formation of oscillation marks in the continuous casting of steel slabs.  Metallurgical Transactions B.  15, 493–509 (1984).
  7. Steinrück H., Rudisher C., Schneider W.  Modelling of continuous casting process.  Nonlinear Analysis: Theory, Methods & Applications.  30 (8), 4915–4925 (1997).
  8. Schwerdtfeger K., Sha H.  Depth of oscillation marks forming in continuous casting of steel.  Metallurgical and Materials Transactions B.  31, 813–826 (2000).
  9. Vynnycky M., Zambrano M.  Towards a "moving-point" formulation for the modelling of oscillation-mark formation in the continuous casting of steel.  Applied Mathematical Modelling.  63, 243–265 (2018).
  10. Bikerman J.  Physical Surfaces.  Elsevier Science (2012).
  11. Pletcher R.  Computational Fluid Mechanics and Heat Transfer.  CRC Press (1997).
  12. Dantzig J., Tucker C.  Modeling in Material Processing.  Cambridge University Press (2012).
  13. Crank J.  Free and Moving Boundary Problems.  Oxford University Press (1975).
  14. Elsevier Science.  OpenFOAM — Field Operation and Manipulation.  OpenFOAM foundation (2012).
  15. Leveque J. R.  Finite Volume Methods for Hyperbolic Problems.  Cambridge University Press (2002).
  16. Mitchell S. L., Vynnycky M.  On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions.  Journal of Computational and Applied Mathematics.  264, 49–64 (2014).
  17. Mitchell S. L., Vynnycky M.  Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems.  Applied Mathematics and Computation.  215 (4), 1609–1621 (2009).
  18. Prosperetti A., Tryggvason G.  Computational Methods in Multiphase Flow.  Cambridge University Press (2009).
  19. Burden R., Faires J.  Numerical Analysis.  Brooks/Cole (2012).
  20. Leveque R. J.  Finite Difference Methods for Ordinary and Partial Differential Equations.  Society for Industrial and Applied Mathematics (SIAM) (2007).
  21. Chen G., Xiong Q., Morris P., Paterson E., Sergeev A., Wang Y.  OpenFOAM for Computational Fluid Dynamics.  Notices of the AMS.  61 (4), 354–363 (2014).
  22. Eaton J., Bateman D., Hauberg S., Wehbring R.  GNU Octave, version 5.2.0 manual: a high-level interactive language for numerical computations.  https://www.gnu.org/software/octave/doc/v5.2.0 (2020).
  23. Caldwell J., Kwan Y. Y.  Numerical methods for one-dimensional Stefan problems.  Communications in Numerical Methods in Engineering.  20 (7), 535–545 (2004).
  24. Voller V. R.  Fast Implicit Finite-Difference Method for the Analysis of Phase Change Problems.  Numerical Heat Transfer, Part B: Fundamentals.  17 (2), 155–169 (1990).
  25. Voller V. R., Prakash C.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems.  International Journal of Heat and Mass Transfer.  30 (8), 1709–1719 (1987).