Penalty method for pricing American-style Asian option with jumps diffusion process

2023;
: pp. 1215–1221
https://doi.org/10.23939/mmc2023.04.1215
Received: September 26, 2023
Revised: November 08, 2023
Accepted: November 09, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1215–1221 (2023)

1
Institute for Mathematical Research, Universiti Putra Malaysia
2
Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia

American-style options are important derivative contracts in today's worldwide financial markets.  They trade large volumes on various underlying assets, including stocks, indices, foreign exchange rates, and futures.  In this work, a penalty approach is derived and examined for use in pricing the American style of Asian option under the Merton model.  The Black–Scholes equation incorporates a small non-linear penalty factor.  In this approach, the free and moving boundary imposed by the contract's early exercise feature is removed in order to create a stable solution domain.  By including Jump-diffusion in the models, they are able to capture the skewness and kurtosis features of return distributions often observed in several assets in the market.  The performance of the schemes is investigated through a series of numerical experiments.

  1. Amin K. I.  Jump diffusion option valuation in discrete time.  The Journal of Finance.  48 (5), 1833–1863 (1993).
  2. Zhang X. L.  Numerical analysis of American option pricing in a jump-diffusion model.  Mathematics of Operations Research.  22 (3), 668–690 (1997).
  3. Andersen L., Andreasen J.  Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing.  Review of Derivatives Research.  4, 231–262 (2000).
  4. Nielsen B. F., Skavhaug O., Tveito A.  A penalty scheme for solving American option problems.  Progress in Industrial Mathematics at ECMI 2000. 608–612 (2002).
  5. d'Halluin Y., Forsyth P. A., Labahn G.  A penalty method for American options with jump diffusion processes.  Numerische Mathematik.  97, 321–352 (2004).
  6. Eraker B., Johannes M., Polson N.  The impact of jumps in volatility and returns.  The Journal of Finance.  58 (3), 1269–1300 (2003).
  7. Merton R. C.  Option pricing when underlying stock returns are discontinuous.  Journal of Financial Economics.  3 (1–2), 125–144 (1976).
  8. Ikonen S., Toivanen J.  Efficient numerical methods for pricing American options under stochastic volatility.  Numerical Methods for Partial Differential Equations: An International Journal.  24 (1), 104–126 (2008).
  9. Lesmana D. C., Wang S.  A numerical scheme for pricing American options with transaction costs under a jump diffusion process.  Journal of Industrial and Management Optimization. 13 (4), 1793–1813 (2016).
  10. Laham M. F., Ibrahim S. N. I., Kilicman A.  Pricing Arithmetic Asian Put Option with Early Exercise Boundary under Jump-Diffusion Process.  Malaysian Journal of Mathematical Sciences.  14 (1), 1–15 (2020).
  11. Parrott A. K., Rout S.  Semi-Lagrange time integration for PDE models of Asian options.  Progress in Industrial Mathematics at ECMI 2004.  432–436, (2006).
  12. Aatif E., El Mouatasim A.  European option pricing under model involving slow growth volatility with jump.  Mathematical Modeling and Computing.  10 (3), 889–898 (2023).
  13. Ibrahim S. N. I., Laham M. F.  Call warrants pricing formula under mixed-fractional Brownian motion with Merton jump-diffusion.  Mathematical Modeling and Computing.  9 (4), 892–897 (2022).
  14. Sawal A. S., Ibrahim S. N. I., Roslan T. R. N.  Pricing equity warrants with jumps, stochastic volatility, and stochastic interest rates.  Mathematical Modeling and Computing.  9 (4), 882–891 (2022).